近段时间在看SQLAlchemy,总之万事开头难,但是么办法。
Database Urls
The create_engine()
function produces an Engine
object based on a URL. These URLs follow RFC-1738, and usually can include username, password, hostname, database name as well as optional keyword arguments for additional configuration. In some cases a file path is accepted, and in others a “data source name” replaces the “host” and “database” portions. The typical form of a database URL is:
dialect+driver://username:password@host:port/database 标准连接数据库规范
MS-SQL连接案例
Microsoft SQL Server
The SQL Server dialect uses pyodbc as the default DBAPI. pymssql is also available:
# pyodbc engine = create_engine('mssql+pyodbc://scott:tiger@mydsn') # pymssql engine = create_engine('mssql+pymssql://scott:tiger@hostname:port/dbname')
More notes on connecting to SQL Server at Microsoft SQL Server.
这里面测试用的是pyodbc进行连接的,分两种
engine=create_engine("mssql+pyodbc://sa:@192.168.6.112:1433/FactoryHome?driver=SQL+Server+Native+Client+10.0")
还有一种就是通过微软的dsn进行连接,如不知道dsn连接,可以百度一下看看是什么意思
对数据的插入
from sqlalchemy import * engine=create_engine("mssql+pyodbc://sa:@192.168.6.112:1433/FactoryHome?driver=SQL+Server+Native+Client+10.0") metadata=MetaData() Table_1=Table("Table_1",metadata, Column("Code",String(10)),Column("Name",String(10))) ins=Table_1.insert().values(Code='cccccc',Name='王二') conn=engine.connect() result=conn.execute(ins)
参数化的形式,感觉有点感觉比拼接SQL来的快。
result=conn.execute(Table_1.insert(),Code='kkkkk',Name='网易')
对于给定的参数也可以这样传值。
对于数据的查询,也必须的先构造一个TABLE,然后对应的字段进行查询
from sqlalchemy import * engine=create_engine("mssql+pyodbc://sa:@192.168.6.112:1433/FactoryHome?driver=SQL+Server+Native+Client+10.0") metadata=MetaData() Table_1=Table("Table_1",metadata, Column("Code",String(10)),Column("Name",String(10))) conn=engine.connect() result=conn.execute(select([Table_1])) for row in result: print(row)
SQLAlchemy最好的方式就是能像SQL语句一样能实现join连接查询
>>> s = select([users, addresses]).where(users.c.id == addresses.c.user_id) SQL>>> for row in conn.execute(s): ... print(row)
这样可以通过相关表的关联就能查询数据。
有好多东西,再叙。