版权声明:本文为博主原创文章,欢迎转载,并请注明出处。联系方式:460356155@qq.com
加载https://www.cnblogs.com/zhengbiqing/p/11068529.html训练得到的74%精度的模型,预测图片。
import os import random import numpy as np from keras.preprocessing import image from keras.models import load_model model = load_model(r"D:\projects\cats_and_dogs_small_1.h5") all_num = 12500 num = 100 # 从0~12499随机生成随机数列表 result = random.sample(range(0, all_num), num) predict_class = 'dog' class_indices = {'cat': 0, 'dog': 1} hit_num = 0 hit_val = class_indices.get(predict_class) for i in range(num): file_path = r'D:\BaiduNetdiskDownload\train\%s.%s.jpg' % (predict_class, result[i]) img = image.load_img(file_path, target_size=(150, 150)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) y = model.predict_classes(x) if int(y[0][0]) == hit_val: hit_num += 1 print('Predict %s images %s, Acc: %.3f%%' % (predict_class, num, hit_num/num))
Predict dog images 100, Acc: 0.830%
Predict cat images 1000, Acc: 0.661%
预测全部12500张图:
Predict dog images 12500, Acc: 0.832%
Predict cat images 12500, Acc: 0.690%
看来cat比dog更难预测。