题目描述
动态规划组成部分一:确定状态
子问题
动态规划组成部分三:初始条件和边界情况
动态规划组成部分四:计算顺序
Java代码实现:
public int longestCommonSubsequence(String A, String B) {
int m = A.length();
int n = B.length();
char[] a = A.toCharArray();
char[] b = B.toCharArray();
int[][] f = new int[m + 1][n + 1];
for (int i = 0; i <= m; i++)
f[i][0] = 0;
for (int j = 0; j <= n; j++)
f[0][j] = 0;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
if (a[i - 1] == b[j - 1])
f[i][j] = f[i - 1][j - 1] + 1;
else
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
return f[m][n];
}