【Longest Palindromic Substring】cpp

题目:

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

代码:

class Solution {
public:
string longestPalindrome(string s) {
const size_t len = s.length();
// initialize dp matrix
bool dp[len][len];
std::fill_n(&dp[][], len*len, false);
dp[][] = true;
for ( size_t i = ; i < len; ++i )
{
dp[i][i] = true;
dp[i][i-] = true;
}
// dp process
size_t left = ;
size_t longest_palindrome = ;
for ( size_t k = ; k <= len; ++k )
{
for ( size_t i = ; i <= len-k; ++i )
{
if ( dp[i+][i+k-] && s[i]==s[i+k-] )
{
dp[i][i+k-] = true;
if ( longest_palindrome < k )
{
left = i;
longest_palindrome = k;
}
}
}
}
return s.substr(left,longest_palindrome);
}
};

tips:

采用动态规划思路,时间复杂度O(n²)。代码并不是最优的,但是相对简洁的(不用考虑奇数偶数的情况)。

判断一个子串是否是回文可以用其“掐头去尾”后的子子串是来判断:

a. 子子串是回文

b. 头等于尾

同时满足a,b则一定是回文;否则,一定不是回文。

这里设定一个dp[][]数组:dp[i][j]=true表示i到j这个子串是回文,dp[i][j]=false表示i到j这个子串不是回文。

对dp数组初始化时候需要注意两点:

(1)

显然dp[i][i]表示单个元素,都是回文,初始化为true。

(2)

dp[i][i-1]这种情况按理说是不存在的(因为左边的index不能大于右边的index),但是当k=2的时候,判断相邻两个字符是否构成回文的时候

有“dp[i+1][i+k-2]”这个情况,显然dp[i+1][i],此时这个判断其实是不起作用的,只用判断相邻两个元素相等即可;但是为了代码的简洁(都在一个循环中写下),强制令dp[1][0]、dp[2][1]、...、dp[len-1][len-2]都为true。

这里第一层循环k代表可能回文的长度(从2起),第二层循环i代表回文开始的位置。这里有一点要注意,就是k是可以取到len这个值的(即整个字符串就是一个大回文);并且,i是可以取到len-k的(因为最后一个字符的下标是len-1到len-k长度正好是k)。这两个边界细节要注意。

另,还有大Manacher算法,可以做到O(n)时间复杂度。以后再研究一下。

================================================

第二次过这道题,记得还用动归;但是具体指针下标迭代还需要考虑清楚。

class Solution {
public:
string longestPalindrome(string s) {
const int len = s.size();
bool dp[len][len];
std::fill_n(&dp[][], len*len, false);
for ( int i=; i<len; ++i ) dp[i][i]=true;
int l = ;
int r = ;
for ( int i=; i<len; ++i )
{
for ( int j=; j<i; ++j )
{
if ( i-j< )
{
dp[j][i] = s[i]==s[j];
if ( dp[j][i] && i-j>r-l )
{
l = j;
r = i;
}
}
else
{
dp[j][i] = dp[j+][i-] && s[i]==s[j];
if ( dp[j][i] && i-j>r-l )
{
l = j;
r = i;
}
}
}
}
return s.substr(l,r-l+);
}
};
上一篇:SSM-MyBatis-08:Mybatis中SqlSession的commit方法为什么会造成事物的提交


下一篇:【Longest Consecutive Sequence】cpp