python中的迭代、生成器等等

本人对编程语言实在是一窍不通啊。。。今天看了廖雪峰老师的关于迭代,迭代器,生成器,递归等等,word天,这都什么跟什么啊。。。

1.关于迭代

  如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)(Iteration的中文意思就是:反复、重复、迭代等)。而这些for循环所遍历的对象(list or tuple 等)成为可迭代对象(Iterable)。

  也就是说“迭代”就是一个动作或者过程,可以把list或tuple中的元素一个个检查一遍(遍历)。如下:

 >>> for i in range(0,10):
print (i)

结果会是  0   1 2 3 4  5 6 7 8 9    这个过程就是迭代,而这里的range(0,10)就是可迭代对象(Iterable)。所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

  1.1 判断一个对象是否是可迭代对象

  通过collections模块的Iterable类型来判断:

 >>>from collections import Iterable
>>>isinstance('abc',Iterable) #str 'abc' 是否可迭代(Iterable)
  True
>>>isinstance([1,2,3],Iterable) #list [1,2,3] 是否可迭代(Iterable)
  True
>>>isinstance(123,Iterable) # 整数123 是否可迭代

2.生成器

  在Python中,一边循环一边计算的机制,称为生成器:generator。定义generator有两种方式。

  2.1 定义generator的第一种方法

 >>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

这一种方法很简单,把一个列表生成式[]改成(),就创建了generator。这里创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。如果要一个一个把g里面的元素打印出来,可以通过next()函数获得generator的下一个返回值:

 >>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

 generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。但是,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它:

 >>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81

  2.1 定义generator的第二种方法

第二种方法是通过函数来定义。

著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

 def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b #这里指的是a=b,b=a+b
n = n + 1
return 'done'

我现在才知道为什么要加一个max参数,利用n<max 正好可以使a+b的次数等于输入的max,例如fib(10),那么结束循环的时候a+b正好10次。

测试代码如下:

fib(6):
1
1
2
3
5
8
'done'

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

 def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator

 >>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

 >>> for n in fib(6):
... print(n)
...
1
1
2
3
5
8

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

再看下面这个例子:

 def odd():
print('step 1')
yield 1
print('step 2')
yield(3)
print('step 3')
yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

 >>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

 

上一篇:获取元素计算后的css样式封装


下一篇:linux正确重启MySQL的方法