在VS2013中使用Log4net

大致分为3个步骤

  1. 引用Log4net

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXEAAADJCAIAAABaC5VfAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB7QSURBVHhe7Z3fiyXHdcf1T1jgkayfs5bsxESeTTA4CXnZ9dMKTCxrbeVFEAfECMToQTIyBD8kBIFDhmQWy9KjHgzGhNnchxX4wSDwHzC76N16EMIYootIHpLYa+WcOlWnT52u7tv3dvftO32/xYeh7qlTVd09db63qqe75oGvfOUZAAAYCmgKAGBIHrhy5YsAADAU0BQAwJBAUwAAQwJNAQAMCTQFADAkqzXlV52TqwgA2EOgKQCAIRldUw5PFp+GtFwuTg6vuFLh8PDVxfLe2Y1yqeXwxq173TzrcC/3bt04vHKyWMohabp39qxzXsnk56Wn4+w3zu4tF69SRk9zg7Or0+fKW+ioBjkesLN00pQvfemPV1LUlDAQY8hR/uykPCLbY697ZLbjgnDdZq3/LpyXO51opAMLRj2qnr1sRkunh4fPnt3b9vGAbTKypvC3UuG71DFq7CkuCNdt1vrvwnm50xFokuJmAZPE8IoTp6sXZlJglqytKU998Wni6af/yBqJsqbw2KLBlY9y/pKP0/JF/l1qx2LKcwviTAMxc2hq5yyuStrn2LapaEkNynImRKO2Xz8Mqrxb51WUj1A3W53F1k5iL9KaGBcLsoVzbz4XzucXKpS2XCtblKp3UGRwSVmtKS+++CKJiAgHZd58883bt29bo1DUFEKHlBmaNBJ1aPIw1fGaDdzVxmI7ZOXvQP4ypPLmgWubdR+pLkWa+zqt+e/ceQU3X8QzKqd90lqIateF0ZfiMWQZLpULFS6F7cX52MuYStt+NeBSs1pTSEQoyfSEMqQdkqioi6YIYWjyMA2ZajzxeCNjcby2G1vbsZ7iUMc5hAbj1ykl/oINFg2VYoPisyPnFYqquvVQT/ashUIX7ecSTjlepupCVf7cgm8tO4xwYOVTADOg09qHkigLZb73vb8TCxV11xRC/h7hxt8ksSc4B9egQodNkeMadw47cl6hKNZtidu8NdYd30X7udQuVMFSO0i9jKk08wdzopOmqI5QRuSDEhWt1JTDk1t27IZ5Mo0nGlDBmMZiNV7TEA91w2S8LSAb27GelC/iHKTB+rc6ITc+s8Z38rxCL8mNlaB8H1S6kDNt7qLxGGx1QS+CsVStKXIZuZTaxP2U+TKypoTxF+bIPEmORh6mbJTQSm5VMCT/hRopQIKlfC+z3E5pWFvqDtpg7Kv2BEp+GJWnqz7heWncyrxAUz3gF4voELUjb3bFMeQXKpVGizRYnVrtMrboHZgBvdY+ktFka4FJ4GhfNQVoV6UmQq0oCn2wkykwS7reo9V81A8oyK5CM5T2WcCGmkKTiyEWLNQMJinzZrWmOEhW5G/Jzg4uC+tqiqx0dBEEQDtrawoAALQATQEADAk0BQAwJNAUAMCQQFMAAEMylqa8efcfO+IqAgAuNSNqin3Ktomipmz2AIWDH9Po9zyFPHIenwEd4VnyLqe58dMc2nj4S/AmF3PjimDPWUNTrl//hrO0MK2mhBaWawmB61QeypDHzOVj02ZuG7PyNPkY+Bn6jRRho2vY/8oD0FVTnnvu2x9//LEztqCaUn9XSH8SI2kKTVIWZ+u9qGY7ta/8jcfK05SXd+SnK1oJNAVMRSdNIUH57W9/S0sAZ29BNEUE5erVP6P8X/7FX7G0mLSWpsjEQVYidvogxntntypFIOMibD4QNCW2VtskTeuGd9vIJy1zpC4bC6GltShlb9/l7dt1U3RrqqjHXB2MlMb3YrgoiWOsUtqirWz0bz/7o5I3/SjxWbOn++gPj1LLWQNArNYUFRRKrqgF0RQSjm9+868po4iUyE+io6bIcDfBqdESjXz3JBp9KIqb3JXgl1aohnu1P25WZiwmjC0th+Hbp4y5D9JcMctIC1EUquOPZ6TtFLdoKxldhgWlGPx155qxePD+rKU1sOes0BQrKJRcaQtFTaGPNq2hKTyUq1HLAXtS+gK/cUVXClpqW9N8aDB+8VIqfS0XgsTZ42E0t68B3F5RnOOhhIMhH7vkYcWU6DV9EfUDqBvzXvxJkRzETnNnLmqo2HLW4gD2nDZNcYJCyTm0IJry+uvfJ+3QtY/Iiv4khtYU+lkFJ6Xw7V0Y/a5BWxTy/JVOXWip4GqtjC7SAjqGeKjNFV0pEYryEwkOxYNsN7b1kiw6FcqbKleEpoB2GjXl+vVvfPzxx3FEp+R8WhBNIURWKL3wwt+IxdJVU9jCQ5nzVSRURl37VFXIrWWeEurahYB144/hC1wa54/h7z62R26fsg3tSy1CphvtFaU0OxgK3CSX/DFTiuiZt1M0auOS4UaKvYRamTOXZi1Qo+WDt57SLNhzOt2j3QDVlHaaNaX6ljbRwkarHTp1t/doYxH5N2tKdEi9yMqCQkzz3iFFeP0wiu2bNQVH4OqK+cFwsJvgJ2T5I1WKW7Q17duW9cL52EtQKFYZyofa0UcvQlax21lTHoBd1JQNCIM+Ru+MKUYvQhrsFCNqSkdcxc2gb1e7WJgr0BSw+4ylKVtAp+5hTj7/SQoBTQG7zyXWFADADgJNAQAMCTQFADAk0BQAwJBAUwAAQzK8pjz33LedpQ/PP3/z9u3b8iTua6+95koBALvG8Jrym9/8ZihZIUERNaGk/wuxifAnVf3T8pb+thqetcPfcQGoGF5TKKQ/+uijQWRFZyhWUJpmK/YxDX6SfbRH4PA8CAAtjKIpL7300iCyIoJCyf3DZnWw2FAfNeyhKQC0MIqm0M9BZEUERRKpiQgKJecmFDVFMovFPXnQNixV4vooe9cu3ySN7dVbc9VruPqenqTmF+2kSvWYr/QFwD4wlqYQP/rRP5OsHB1d1aJ1EQVxiRZEzk2w4a1rn2Aka3izOeSjlKT7IGJse+W/2gXOtpNKU75Q5WShrzgDsD+MpSk0QyFBodmKLVqLn/70p1FF8vT88zedpyBhH6YF1es/WaizZFSvBXHI53sLVcY045Dk5yOlfKFKsOjEB4A9YRRNGVZQfvGLX0iGZihNgkI4dagbQ5C3aUq19VHuGYoKOmLz9SoCzZjogsjkCIB9YBRNGVBQ3lz1J2TFhnrRGPIsGZxPEiDGuKgpGYVaOzVNqVVRZKs3ZwRgrgyvKZ988kkfQSGinKwjKIQN9SZjUA25jZqJgtskzXpScmsfguY4dbuvUtvqDYB9YHhN6SkoxAaCsjFFJQIAbMzwmnK5gKYAMCzQFGgKAEOy75oCABiWB66+/RkAAAwFNAUAMCTQFADAkEBTAABDAk0BAAzJJdAUd1dZcW5HP7n//v37n6X0/i//4ByUo1+y2/3l/e/+pNFnc65+DYC54QZ5K6Nryrd+5i1NOMkg1C5P1tqkpYpoyrs/Z5kg1aD0w5JkiFuL4vTl6tceeuhhAGbDbmnK3/7HZ//1v97YhNOOXppi8o6WomGApoB5sUOaQoLyP7/jZYizN1HXFCWaTCKjq+7nKWlpc/Tz+x+GNVGYubAPH9Nnn314cb9W+oc4i/l1nOYUS9+9yFqQrt9dRiM0BcyMXdEUFRQOs1ppEacd+nEtTZEe7/+6inYrNKQCmaWhNMpNQ6k0rssrMpKgqL5AU8DM2AlNsYJCyZU2UdcUJZpMIqOrrhIgkwu5maITDUkkB5lS9CktdcdAU8C8oCF99Nbvr/7k/tVuf9MYXlOcoFByDk047VDVWFdTKP/dizTXcAGfu/UqhaaA/YCG9DOny6/+238f/fj/usjKwJryrZ/xTVmXnE8TJBMOtUchMUlLlXLAh0y1MCm59SmVLrD2ATOGhvSXf/jBV/7pQ1KWLrIy4j3aoVCJcTg3G/AETVXkNq3MI0Td3PqFa21aWs+LGzQFzAwa0k8e337q9V+RrNBshRdBKeiKXAJNuWRAU8C8oCH9yAs/Jlmh2QpPVd76vR/zOdCUoZlIU47Pl8vzl51RODh4+Xx59/TaQ+3GYKn+ncj5ceZvOTg+J4flxem1g0YfMBtoSH/h5r8++dK/f/nv7/7Jv/zn0Vu/82M+B5oyNFNoysG104uL8/MLLxzCOpoSLaQaJFHHJckQ6WlRHDAzoClTM4WmXDu9e3F6XX66ImITTSlVEVqKwCyBpkzN1jXl4OD6aZihhNlKtR7hj2Etc3F6WolFyRj9rabQPCU1pVXCzIV84vpI9CsvfUgaOT+/Gz+WSqnn0EBsIXRNpxCblRmQqyhuYBLW1hT3xxTQkwk0hcIvxL+KCxtD8Et80vxlGcSiaJRGtIoEtt6aiSqQhIZUILOUS0mOgtw0lErjurwSQVF9KVbUIrB9aEh/7nMPfv7zB4888ugTTzx5uOqfVUFTBmb7mmKXPKwUErFJaDifQrRolIreLc0OdL4giRrPAr5Paak7oV5Ri8D2gaZMzJY1JURmFX6U4pc/heWmmkJ51alCwBu3XqUpX3CrWcCEQFMmZtuaYm588MewjqDVTYhYzpBxnbVPLeBDlcaFSd9S6aK49ilXrGfUB4wENGU9wv8MWy4Xrzr7jbN78j+Vw39BXuOfim1ZU4KkVLFHVMuf8BQJpewebckouCjldoJahVlDnAq59QvX2rS0lo9uInlNFesZ6QiMBzSlIr4aZJJzIOT/EFKyqhGFZqP/T7hlTQFgbPZRU6JghNRkl2RLBdGUxYJE5dnKeLJYLhab/c9TaAqYGdCUsl2SLRXS/0umn4uTcLEOD58942mL2K8kBy2KE/LFSSwiPaK1E9UNq6QlNAXMDGhK/OjskrSKopLBU5OTIBwkDfdu3Uh2dRBByaYzXBQtkqcWoClgZkBTynZJtlSoJCNKSRQXIyXGgUrMBdUizqdSaAqYGdCUsl2SLRWMdoQlz0lUFmgKAMI+akoTUUhMcg5Epgsni08//dSsZXJNKa99Ul3Ok6hAU8DcgKasR64LpBpxJlLXlGT092iliEt5qoJ7tGBuQFMmBpoCZgY0ZWKgKWBmQFMmBpoCZgY0ZWKgKWBmQFMmBpoCZgY0ZWKm0pSwa1p576LiK7xlY3prWTZhsUVdCC8Tr/2ucDiS+Nc0SvJechE5PHlb2hWB8YCmTMwkmsLB3H/ffFaEKCWUP22O7WGxR8LbwTTImUhPi+KAkYCmTMwkmiLbsslPV0R01ZR8e6etkWlK6VCFliIwKtCUidm+pujW1mG2YvZ8S9sarbNvvt/hSf1l+iCBHbbFv3sRNpSLblGPrDrw7m1UkZLbZsnNRDJNMbqW+/OxhcbibvvNBxY+lkqxX/9mQFPWRh7JD8Moe51nMybQFAqDEIcqLmwMQShxottEFo3SiKAxFgNMQjFFO4WitBCjmuI/3cHhbNywUjridqw81ZvKi2Jga4MNXSdLuTQdWEOpNM6HHYVmjYPcZ6ApFfElH5OcA6Hv/kn+LGx30I57JN+xfU2xSx5WComcJDScT6FSNEpFi3xXs0akL21J1HIWdZxPs4AoaqajUOTajA0Z7eCiUq0VXfcp3egg95l91JQoGCE12SXZUoG3dAsvIjt7CzulKSFCqjCgFL+EKTw21RRCtKkQdXktkTMVtVXhmlkU22bVVGvXvUo3Osh9BppStkuypYK8FqhvG8vLx7I5E3+MisNGidjFSfUaoeyMHWY6bJGl07Y1xdyA4I9hPp+WIZwhIwuERFHJKBW57vFpirq4KBB/nQSFoio4+SMFIf+9KcZhFa7lZUVmUWybpgXvX3PrUypdrD5I4+wz6jN7oCnxo7NL0ioW0RESBZGSsBlt3EY/7s9kLOxg5ilZ/mRB2rRlTQmSUsUAwWKRbhwE6cvv0a7YNz/JZZr2h6/uyugiSsKycjaltjVRMdeUVHG1CD5+WUm1d71paS3fdpDqXM9IR/sANKVsl2RLHTLdSDsY8IyDM7I/UygycxmjI2mSIomkZ8uaAsDYQFPKdkm2tA7/T58wH6EMKYj8tKWkGm7blKAp2V+LoClgZuyjpjQRhcQk50AcntxKq5hqGzdWCvn/HKFIEZXJNIXz1RSGgKaAmQFNWQ8RBV25qP2ErOnjYe0BFipVf7v8wdoHzA9oyjDI3Vln7AI0BcwMaMoAhLXPeg+tKNAUMDOgKb2Quyqb/adkQTXl6tU/BeBSA03ZCaApYDZAU3YCaAqYDdCUnaCLpjz11NPk8PDDXzg6ukpQhj6S0bkBMC1pJENTJqVdU5555quPP/7E17/+5+++++4rr7xy5cpTBGXoIxmpiBxcFQCmApqyE7RrCk1JSEHeD+m9996TKpQRCxWRg6sCwFRAU3aCdk0hu2oKpX8IKX4ImtJUEYDtk0YyNGVN6o/J9mGlphCy9olCEpKsfVoqNnF09IM7y+Xyzg+c/ebbHyyXH7x986qzj0f9SIJlxTEc3XyHDjRe/w/euXnU9YClu1hxnTPtclRASAMSmpKIL/mY5ByI8GR9lBLKD7jPm/v1CGSPKtKQmio2IRFCyQZJDO8JNIUOZHnnjdjpyugNglI5vHHnzhslTSm2Y40soJ31aOVRASWN5P3TlCgYITXZJdlSgfdGGWefN/frEcgexaMhNVVsQiLkzh0Sle9UxjfuLO/c2XLkxFh9450PUni3R+/R0XdIClSAWii2Y43tHTnWct5z0kiGppTskmyp4F4sHnCfN/frEcgu2vHYo08Q9XxTxSZShNDP+CUfYlUsMXJIYeIBh4VJrPL2HTGqGDk39kwLkw/efkdbUyOtc+y0QmOV2pE21WLDuDJyOw0Tk6wL8vcHxj6lNilfOIsgXmIkCcuPKi7WNjt317JUnBNpJO+9priMTVrFMtI+b+7XI5BdtGNoTeFIlmHN455nClWYOU8bSzyjaZAGcZM29e6MlkrdbHKUVSxnMrd4nLF9uv5NXViLYo31tU/VSwj70nEWZkmmFmVWn3uYD1YyNz/SSMY8pWSXZEsdMt1IWy7xjIMzPfZ5c78egeyiHU2pqWITVRikEBVxcQEQD68eGy1uJuazXuz5mohyTVFRVavUY2iqkrOWLmx1JRijm5XFwlmY0lSR7/tkQrPRuYvFtjMz0kiGppTskmxpnWH3eXO/HoHsUTwaUlPFJqoRL0uedDsjjwSdqItnLMqq190a4yoLUSVvVmYBqVaxR2PM7LUunGebsXgWhdbkZrJd5mx+7jLJclOeeZBG8v5pShNRSExyDsR4+7y5X49AdtGOwdc+nA9ftvK1WUUCTRlEZTgkgsVWWeFGMcRu+fyfcoVvZtssf+R24t+eksTEgxQj5UOzMUqrI6l14VpuMxbOgrsutsa+cq16nzv5kF1brmec/2UhjWRoyjqIKPBclmaz5qbJSe993tyvRyC7aMcomsLxUw9RDio+NvnrUD7QW9y4NK0IivcpKTWtfQSNRi7VxUX+Bym1U9JwrXdBUa/56FPrLhhLZ8GesTW7KhTnoCYbnnt1UkEZTcs+I4d36UgjGZoyBHJ31hm70FFTmlJTxWkJsVSY9u8D+3zuaSRDU3oT1j5993lzvx6B7FE8GlJTxWkJ6xVeHTj7PrDP555GMjSlB2Pv8yZF7bgqU6HrCJ3bO4cZs8/nbkkDEpoyKe2aAsAlApqyE0BTwGyApuwE0BQwG6ApO4FqCgDzAJoyMVvQFOoCgLGx4w2aMiX2lwHADICmrE39Mdk+QFPAzICmVMSXfExyDkR4sj5KCeUH3OcNgHmwj5oSBSOkJrskWyrw3ijj7PMGwDyAppTtkmyp4F4sHnCfNwDmATQlfnR2SVrFMtI+bwDMA2hK2S7JljpkupG2XOIZB2d67PMGwDyAppTtkmxpnWH3eQNgHuyjpjQRhcQk50CMt8/b1jg4Po+zpOX58cFDrnT7HJ9XEzdJF6fXDw5ePl/ePb2WHd7BtdOLmhHsGtCU9RBRkKFvb5qc9N7nbTuEsIxSQvnT47HisygKLTj/dauD3QGaMgxyd9YZu7BtTaFZwcXptfGnJ9CUvQWaMgBh7dN3n7ftEGKVVOV6brxOsxeZOp2HmUuYzuQWCfLjaNcW1NOupKSXUPvT5fnL1o2SNOgoa0renfrUDxjsDtCUXgy4z9vW0IBMYsEfrcqIIhhxkTBmo8xxcmMUApoB1RpJRaUG1VOw/ulj6o7mVkGw1IctQarADgJNmZjta4ogEweK85DJbtY6C8cvueUxH42hEZkvULJxbv2LDUpeKWlKqq5SopnQr5ttgR0BmjIxU2kKce30LqnABpoiU5uiHimZ/9CaIj50/CRk9abAtEBTJmbLmnJwfJoCNS55Oqx9WA7EKG5Fo8PGf7FB9RSsv/uoeedDkKxgtrJrQFMmZtuaEsLbLVWs0UQ+W5Z5YJ+f89RA3awnJXePg+Yjaqw36HB6YT9qvsrs2CM2wAJNmZgta8rGuJgHoAloysRAU8DMgKasTf0x2T5AU8DMgKZUxJd8THIORHiyPkoJ5bHPGwCOfdSUKBghNdkl2VKB90bBPm8ANANNKdsl2VLBvViMfd4AcEBT4kdnl6RVLNjnDYAWoClluyRb6pDpRtpyiWccnME+b2DvgaaU7ZJsaR3s8wZAnX3UlCaikJjkHIgZ7PMGwKhAU9ZDREFXLmo/GXmft/dbk3MGYEKgKcMgd2edsQvQFDAzoCkDENY+4+7zRsLx2KNPFIGmgJ0CmtKLafd5E6FZS1PCI/bLps2TNqPLW8LdewlvMG94PHJ2cjCUOm6tMvhrB8e856/ZO4I3jJF9avbi5QZoysS0aAqJRUsihw3mKRI/F7yFSRzcPSMqhEqUEso3bcTf3stQUb1ZO0P1rritLYt7UM0YaMrE9NEU+rmZpvDe0Wn3/J4RxfHTYSP+9l6GiurN2hmqdyXTWW58vzZ5gaZMTLumyEykjuiIzXdE40fn5zaiQjCEP1GFMNAvWO/jl05+qzdtRxcg2kLWVMxzC+LMawTXV7Gd07ja8v2auuFjtYVd0r7g0LAdP+cbejw/vyvXxF0iV0r+oUrcW5PzfBHDrlSlXrpf50sENGViVmqK/tSkOmLzHdFR25Jht7AJfhUP9PEi7tJY365RQigPwhQkHDzNvaw2FtshazwqG8mpblQEKQoWysjPVL1h938pLfZYUB+5RKbUoleprheFRrpd58sCNGVippqncD4M5WqscxTFgKTERWQJ4Xd8rsslko9Y3SHVKX5Cpgp1CapyRLUbW9uxnuJQtLAx3EJ2gS1F/thW9hjOUa4PJXv1pIrCnvnlynvZ/DrvPtCUiek5T5Fka7WTRUicopcjKjlQ0cv0ZRpG+flxGv3qY6Gv1hghzZGZH0CrsbUd6ykORQsbGzRFVyhr9Fi4RIUegz1cutJ9q/7XeceBpqxN/THZPvSZp2yAi4EwvimFsc5FfhrPM3AzGz8/57m6dShtxM/txBhO8VNFVIrkUJcctet4VMazrR3rSXmhwUIV5WdsU06hdGxcuqrH7BLZUgddLhok6ux6cZdx5XW+REBTKuJLPiY5ByI8WR+lhPKj7vOmmsJTETNbGVBTCBrB1eb4QWKiYsoKny221MePRIitwsbUjtt2P+b1eRYKnWQkeQmW8j3acju1c7EHQ+ni9GWqr4FKOblH63b/796jdWCf5rUP4S5XsRdpxDm7ipeOfdSUKBghNdkl2VKB90bZ1j5vIh9FNtaUPadFAsBQQFPKdkm2VHAvFo+6zxvPSZqTcwZdgKZsAWhK/OjskrSKBfu8XV6gKVsAmlK2S7KlDplupC2XeMbBGezzBvYeaErZLsmW1sE+bwDU2UdNaSIKiUnOgcA+bwC0A01ZDxEFXbmo/WTkfd4AuCxAU4ZB7s46YxegKWBmQFMGIKx9Nt/nDYCZAU3ZnP77vNV58snDRx997ODg4MEHH6TfDQCXDko0gGkY02B2w7sONGV06Nfw+OOPP/zwF+i3QmIPwKWDEg1gGsbQlJ2A5ooiKyTzNHsE4NJBQ1cEZeXCh4CmbAORFYKWowBcOmT0dhEUApqyVei3AsClww3jdqApAIAhgaYAAIYEmlJ4THY78OvO5ikY/mSe8W/CvhnQaOFHe4f8czgA3ZmzpsSXfExyDkQIvygllO+/z9ta6NO6fBjdnrLroikATMgcNCUKRkhNdkm2VHCThS4MGMMqJd1fBYCmgB1n7zWFA5IiMi46+u/zFiP8JBqpKdkkgVJxacPvOt+LeywQK6t30RS1xMxZXNxVp5mO+d7ZLVcXgJ7MUFNcxiatYhl2n7dgIZXi2QdZNJK5kSA60ohiW0gf26o7/1SlbImtifZlLfB5kZEEa9gXEQDY93mKchi+ullBOORS7Elsh6LqSz5FrNaiyJdE0ZuVNuQtrFcLKuGO6OPK6vV2WizlFuiYS90BMAjQlAr+0g5f6bwe2XSft2IYu7zCcwcO72rBtbJ6vZ0WS7kFaAoYkzloShNRSExyDsTg+7wVw9jmTYZ6TKVJm9ap7jPkJhSLcmOUMJbRvC4APZmzpnRBAkxXLmoPNx/iR7mvwQ4h7KVU/YMcVC0Uw9jmNWO7IORj9+p5plp/WdXTjG8tnRHu0YLB2XdNaYIiXL7J540VGgAGAZpSgKce6Y7DvIGmgMGBpmSMsc/bLgNNAQNz5Yv/D1wt045PemhsAAAAAElFTkSuQmCC" alt="" />

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAhUAAACSCAIAAAB9rK9gAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACZ1SURBVHhe7Z1tkB1Hdff3Kx/5lqpUki+GcqrWlZSpSipxlQLIGL9hS1rJwgYsCzAGQgUZZ6PIkvPggAk4DjZYsBLWC8g4sYwhKbOSEI8X/JBQBmww1ioSZQuTJ3FKfgEWI8uy7BjndJ/uM6fP9NydmXt378v+T/1q1ben+3T3zPT53+6592rsd2EwGAwGa27QDxgMBoO1MegHDAaDwdoY9AMGg8FgbQz6AYPBYLA2Bv2AwWAwWBuDfsBgMBisjY39DgwGg8FgzW3st2EwGAwGa25jK67bCgAAADRl7ANT3wEAAADKPLhiRQegHwAAAPIYwTBAPwAAAOQxgmGAfgAAAMhjBMMA/QAAAJDHCIYB+gEAAEuFM5WZQ1mMYBigHwAAsCQIuqHMFChjBMMA/QAAgCWB1gyd7oARDAP0AwAAlhwDpR87L6C+XHDLVTa/G762yjmN1mPnFXzqlnPOPPP8LaX8DNy9ycttflO8n3U7XXrLJHk8Z8NX0wIN6YmTOviG6LqsN/lT31m/YY3vw9dMft/wl7V0sXaeX7+TPNjC2l/3y9cFF8H40jeiwV0KQIZw7w2IfqzfcJnrS/sQr2IoE2NTdEgF1qz6ZDy6cNSfmTGgdD2NS2NvzuVX/f4i6asmnIE1qz5lDrm4TDZ4+mHOc1394IivLjRVLI86xZ2cfBnnTUSXz2HTqw/9AF3gbjlvJj+LEQxDL/RDJmfP9MOvZroLqS2pPTM5ZK9a133gHnb9KHU+5g+afpxzAa2KdEyvpR9+LTWfWpSpqR9BnBr6h36ALuDpaTKrMIJhSPQjLCPYknjkAzrbukk/62R7JIQ/HcK8n8lVhTe92FeuOF/kxxt59tU7rDZ8i9GkJx0a1eOSWZcfrJmZEiLJkijpRuGa5jAhXeXqG9SIYq1S986MrSj9MK0nZ6Z8rrhdfT69n05OpKvc6C3FmTQaUAc/9vPXUXjV15c9800SQnOyYxMb4jC6Sg4VIdVc3yK+Kz+T5/vqsUpY8XjTnYmEc+I9p7WCfxPui5fec8eTw5t1bOwtGW+pPzxw0Q+lT3oUZxZXMHXomtCXmG9RdsjpYKpddQ+cs25S3x7lzpvybW4MMEIYwTAU+uEEoIgvegXg0yHChrltojbdqSX9kColVyEdJnPhNt6pvie5KODQnQkThidDZaMcC/y4qAwXrhxsaWaGtM8vVLPw6eoW+WHiRc/eAx9Nu6c7oMauW2dXxblyJ4ScxLb02fPe5JyUhiDdUyfWV5dDeqT14ZOwhc9MEnrO36Lf2lM6Xk3VUIiJauChPKVjeNXv/X35kA5RLxTTIT6cFonOATkn4YRIx2Kax1LWD30yc+ge6tFZhwqjH35c/vxQlTAKlZkOnMq4DkuvfELXil1V5yQp4/NjJys6r04L1Y3Owcjgb4Herj/8TVbEQYInwCddzOJEpqRP872oQ5ipImHL58dQQsQmkhiaRkaD7Yxqt26jRPVg1Yh0lxx6gFXpsueq7tEsJfe+pGqo4nxm0eMq96EYQuIkbbQ4pBS0PnzSPpUExJhWMSihyNchUvpTGffDiRWHRXkfBEs3lQnc+sQW7apOmlry0iVCxZgfzGeaYapLme2GR58udpg5UVJd9bwgZLrWMyfNI62k51mPqKLz2RbBCEE3AJnJrMIIhiHqB9+vKi7LbVQKZBKDkrfeupgJ2fLSlbHGjaqJF0ODarGgHFXFeVWj3E+yIqxXD1ZNnlArsdB0MvDEW2nuVXVPDVmNPW29aELh/YgFhxX6UXaSazTJl5IOH3qilY4WMS4Tkkxs8pEuGucnYdS89EMQc56lrVL5pJPBSoE7uS6+M244qpPGf2ZoCvGW9jMYn6hShwXT4cS5by6aq27VkZF2S+KROHdHS1e2RueDk5JzsAQxgmForx9pIBNzTkyslJfl6B9J7nIvM2lnIq30wxNmpndbPdgiUR3B00keLJQsqgequpcP5fO07ktGJ9rhAunHPPBpdCEyVFfBzoTmmFb5IgDsTV56J2eGcyhjKdqy5Y2fPOl1iU3U0A9f0Z4Z8Za6TSh1WKjqsMuXKrH6PPqRNOF1MXqOrZSubJ3OO7y34sKBJYoRDEPN/St1B5dLenQIM1XSGJoVhvQu5+mRC2dlD9JuVaNSsmilerBqUvnCGbXL5HvB821Zz0Vh2/OipBp759aLo46i0fTkd3QiiqIadZiX9dAh0qW9BScVOhFG3UE/0p54t24s6dhlaFTdR9h8pC7IV18jnSka8gW0zySsM4U3H2Sz502fnBQz8IgSM92BtGOB0AE/CrnJkxaL82ObKxxWdz6SVy+wlDCCYajx/NzfrPE+41uWY1CoyOgQVhnK2ZVENLqVtVsV6XwVfXNTAe6b75j2EGdXVaOUiNOveD/eebDKYTFSquLyfQE7fOkGDzB6Zg/aW+y5nvk+XWqdfcaGqAwVLl2UOF4/nDj2Sie6mGo087IezrkELH67mrzkaFiKxSHfxDV56cuoToaxcDqM0fuM1flUiCvqVXkg+pyoHLIYsnUwzYxFvUy88YiiZ+pkLCa3hMtPMAOP+AGGfN1iMnBy6zpcdIBL+qM+MwzHtx68hXtADbNz58lPPIEVXQVLCCMYhjF/O4V45+NLND0J+Xb0ds6GW+gWtAGU686rH0Sct94kghdNFJ5Vo86K/vgwGk2maFWjIXCzqUHlB6tCA5HU9aPzOarbgRjZufq6oueme+evk0alqz5AcAfS1pMzULTOtub8dc6hPavSh6yTbKOZl/Vwnouo6mJ6EWtcnDIxy5n6XK+JTcVLGQuVTD5sqvzwB3+luqqiu1RgzomHo2fsZHKi/BVM/HDhwtS5Sg6ZU+qsuCcZM/CCyg6IK2duFHo4YeyusOpJ8vnmILfe+MPlcioynU9Opu08WGoYwTAU64+65KYiCFSfHNYPzMYe0UrwAJGqPgDd0FQ//LyV7SNggH4sCnpPDDTBr+Ggu6BH1NCPZD0L8egI9GOhSPZwIB4NSDYwIR6glzTfvwIAAACgHwAAANoB/QAAANAG6AcAAIA2QD8AAAC0AfoBAACgDWOXf/QuAAAAoCljZ531hwAAAEBToB8AAADaAP0AAADQBugHAACANkA/AAAAtAH6AQAAoA3QDwDAgjN2/cNgBDGXGQAAeg7Fmj/7s/PAiDGPfixffh4YaswF7Tume2DEMJdbgH6MJPPrxxve8MdgSOkwn/sF7qgRppF+/Ol7busjpjOgHdCPUQb6ARYT6MdSA/oxykA/wGIC/VhqQD9GGegHWEwa6cefvHv/xx4+ft3GW01kr8MlO47fOfPgJe++1Ts5eee9++VQTbemM6AdzfTj7E0HnvM2N3dg09l/pA+VOfvsLfvnDm9fmxTLZmaRtsgOb3+HOaqp73OpUZ7P45P7+JTOze2bHP8Dc7Qm4+Mbp+dmpybaVNd3lL9wc9wfsv2b8lcQ13dYWBz9CJpR6MfxrTMnP3Zz8NPBrT5kOgPa0UA/zl57x+EoG5TevumPOk/s7NGasYDEYy4WO/vsd2w/TC8qJQTxpQozn8cnts1G2aD01OT8ApCVip7qR7zK7orn35Tg+g4Li6MftPj42I4Htyr9uO7m8JKOQj8Wkyb6QTP88B1r1QzvPLGzR+vEAhYM/W5US1cZxJcqrH5M7pub3TbRZNmxePpRfRFxfYeF1vrxJxsf3Prwybt+dIooVhIxc+uOB5OS9+53f7V+bLx1/b0nt+74siuQc3vnw0fXu/zQxJ337jedAe1ooh9uGtM8DusAfsk7D3P7t1DOpv3JyzDtN1Hod/lcUccCrwrukHnjWVYLryiuVqi+PWxtpT4T1Smr3RLE6oeL+xT41ySZblESLty0X5GwPExPz3Im29z0xqIK68dkqEgOx8fXTM3OcXVXgIUqJ1eV+qGul7kxqu+Z/BXP34fpPePzXXXOZCdVNySoSTv98ImwAeUjvs10TztC5pevm/GJkn50SDi3Nx8lddE5pjOgHQ2ff8QpF+abmtiqTMj0CRIcN6X9zJTMJOGqbDqgt6dcYbvQCZEi+OS4EHc8Cp+U4w8RFEQksow2H/rQX2xXRi/lUHk+c6CnK6ikIsR9LyRuVaFlJkhFZv1BJZw2FLVILaLGTE47n9nlTkk/klgfM5Mbo7i+5UPVVzytVb5n3B2V3HUl53IIaBrdb0In/XCaQesDF9YJWkmQbIhCuOgfS5KQhEVGST9c5s1HaWGRug0LDl5zQD96TjP9YPhtWozmYcq5/OLpup3tBE/vYlbH93psEgWcH3coeQNo1x88ycVVkoiKspQWHzKl9WQmquYzrzlciFdPRIgQ95VmVOtHkalqOVcuUb1LVtIPuRnCFS/fGGmx8iF7xTvch9kWmbJzOQQMTe83ohf6QX8LPXCS4AoUkuBXJ1Q371b5gX70jDb6Qax1y4FiYlOOTMiKWK8XEPkJLEjhIqdwnosFKpM6Ru8c+a9UXwrQTDaTmegwnyfcftPG7vVD71yRT1q18F8pbMjqB6XlkmUie8d7xlzx+e7DSldZ56CKpvdbk/0rF/R1puxfsQyEYqX1R8h/+GTc7HIeeL0SjqrCpjOgHY2en98RJ6GL7zRdk5kZd5/9PJR564q5o8WsjhNYHS0j+wwurf3oFhNXMZMaOnxgvw8c9HKJY+bz+OQ2HfT9cwtSghD9RUvq6Yer7tJKgVx6dt80yQfXbfT8I7malCpujA6H3NFwxePdkr8Py62Ee7jwk3MOGtFOPyTuuyWFFoObj/I6Qz8/D4cq9IPQYiNunWf/HRFa3HDadAa0o/Hzc7O652eVfi3iJqRLx/DNc3X//sO+RuaRiZ/h1qEguxBkshZJqse0ziSoS9h8YKx++LjPp1SeVXgB8BeuQjNoUaLLSwF5wM7yw1DhwnMT/SBoDaFCf3FjdL5n+MaTK151H4bqNh1chZuz4w0J5qWRfkjEnxcvA8lOVPeYzoB2tNy/GmSWzpPzeekwnxcI3gEzmZphvKNATRZIP2jRwN8WNPndYDoD2jFq+uHeQi6lJ+edWWT98PtXlU/OGejHCNND/eCH4WHrqdeLD8J0BrRjdPQj7GOo/RCwaPrBD1RkB6wD0I8RppF+gBFgBPevgLBo+lEf3FEjDPRjqTG/foChxlzQvmO6B0YMc7kF0g8wgpjLDAAAANRhjJchJhcAAADoDPQDAABAG6AfAAAA2gD9AAAA0AboBwAAgDZAPwAAALQhrx+ve93rAQCLw7Jlb26KmbAA9IVK/eB8AMCCAv0Awwv0A4B+Av0Awwv0A4B+Av0Aw0tX+vHGN761EaY6AAD6AYaXlvrBerBr157HHz/26quvHj/+1D33fPWii1a+8Y10yJBICGFcAbCUgX6A4aWNfrAMsHJoO3bspxdfvEp0IpIXEuOzEctuvP+55547svsak18Hrjt38CaT345ly67ZfcT/b6lz99+47C2ceePBOf2SkZK+8NHd65Ojgq67bNlN9CpWCZlUoLOHIeUN218dbcx4hQ76sX37dpMjmAkLQF9oqR+08mDN+MFDD934tx/ft/8Avzxw4JtaJFKsihi39WmtH0W4b64f3OjBGzOqMHdkz/oQ8TNyEkvetNt3mFWhg8Bo/QhV1u+hRqSV9buPjqR+/HR0rYV+kHiwmXzGTFgA+kJL/eDFB4nH2y9/B/OVe7/KEvKmN71VcT6hNaMnEtJeP3xFF6Ob6we/8e+sH271cHCPyynJg8YvMqwAdKgbJAf6MbTWVD+CdEQzRwkzYQHoC+304zyWiltu+bTox8a/3sSZV1/9QdKMiy9e9eEP/+Xtt39+164vRfYYNm/+6Hve8wHjvA5aP0QSyERRKMKGLG8c9DkKH9m9x8Virx9cd+7IUQraPhGXEf79vq8aMlk82LT2GP0ocqr1o0OBqkNGL6EfQ2eN9COIRmqmjJmwAPSFluuPp556mqRi3/4Doh+fn9rG+kGS8MAD33nppZdejvY/3l6J9htvXJjs+PGnSEsarUUkngYB8AGdNYOkQkdbvWhwb/BdoPfv5RP9cNG/qK4L8MaRT2tXQlP94KPSPUO5rgihbhf6MXRWXz+CXORMFzMTFoC+0FI/Dhz4Jkf/L31pD608SDyef/55evnkk/99Otpjjz1+//0zd++9R7P3nq8wX5/e9+//foRrkT3++LHLLntnTRURhdAxXWK9ztSiwjE3kYeS/IgmaeuVfnDTZSdCVV08/xh2a7T+qIOZsGUmpmb9zetsdmqNObpAcKPTk38gOeOT+7rswOT03Nz0RpPZgvHxjdNzs1MTRd/mhTtPNje3b3K8siIXm5vdNlFdZlRpqR8XXbSKlyDaSDNo2UF//+273/3ABz902drLmTWXvZ2Ql8zat1/BfO7zUydOnKDq9PfCC1fWkZDm+hHe9Wujkln9kAS3JXSpH5xf9qDpXFc0A/oxdLbI+kExl+40juMUN6e6CN8cHLUkdKDn+jE+sW12dt/0bLO4n6Wpfrimo2xQeqriDHi3c3Kqm0rUsNNSP970pre+7W0T3/jG/2XlIKMFBCnHqVOnduzYyYKxZs3akIhUScj6d7/3iSd+9pvf/OaRR37cSD8kQZlRKsJOlDuaC9nzrz9Yh2IQX3bjHonaxpU7ypG9Wj8Kt6otQY7yS1NXmg59xvqjox07tnPt2Nqdx46F112Yd3XW9TPHJBEOtLXF1A8f+Hrznp3QUjQvPdcPckh1+a851JTG+jG5r86SQruFfgQ66wd/qop485uJC6699q8uuWT1f/zH/yfx+No//wvpxJXr1u/a/cW9e++5fevnVisVqdIP4q82/jWtP0hCPvGJvzfNldGywWk2CcS8VnA5R2zQn1c/XL6XEFefjsZILbtPWgPq6wcnxNjtfPpRDE0y2Sf0o2yN9KOzMAy1fpSDOMGiEu8l97Y6yfGBspzD4sHGglQuQ5ncolhGP6b3cS1fZc0UvfBxlt+8u8yczIy7kr4YNRrbCjF6MnRDqkhXRTh99ZBJXaqqKCMym1TcN9slNfzoM7ycndomaeoD9YfPQ2iXBYaq++6Z3nKZ6WnynVyazvtmg0A7/XAfzCXlIP1YvvyC5csvvPrqD5J4PPPMM++68ioSj5/+9IlXXnmFH5vTFFy9+jJSEUa0hOVkrZKQe75yL9X613/9rmmuGzhAd9gy6pKyfiwC0I+sQT8Yik0cnXUmhyTJ58CnJUHCrstR0ZwjnQqFthYX5kxdmAlHffRnmSG3kmAnLpHVDzrqK4qQuEzuA+e76slIJVizeGiHSUVaW3CkjuVdgcl9tgNRgfTwQzo2nXhIvYUTRW7JvGezkJLy7JkPGSemS4NGN/rhJIT1Y8eOL548efIb3zg4sfqynbt2s3KQvfzyyy+99NJnPnt7Vj9YQmQt8ucf+gv/+axXTHOtMds+CwHrh5shan2woPDSCvpRNtGPEPSvXzvmjcK/Pzpz/VmcQYWoQLS1O+lo8dq/HHb9kJAnhHAv7+J9vNamVYFzOHIl+pGrpQuUlz5cJURG7gNJTkxQeRc2lQBodLR1JbmHKrwS1LrpGzv0TZTXEzEuS+BW4yXjJgxchloxPrnprNtQy5/tyWm/6HFppYKmt6bifF0aHNrvX0X9uPDccy/81rceIP3Yvv0LpB//dPdeUQ73MazTp++66x8nJtbQIUa0hBD9YAk5fvx49/ohG03u7C/uygC0ptf6EZXAJX2mP8glybLCIJnlRCjR1urrx/urTRfTs9WgQ3aR6aOS6AcHelOGlYAytYeyPGRr6QKcZvL64d/X0wpg2r3rDl0y+JBahFGyzIrB+9GRXVYqkpM6lIohXS6WhdXLFJ5HP0JPNk4H5dg3SdX9YDO91RXrdWlA6Eo/ePFB+vH97//gxIkT12++geRhx85dIh4vvvjiqVOnbr3tM6u8ftBfTqxeE1TErEIOHZol7THNgaVA79cfPugXSuCXH5RShQthcK+C+cJSKy3W2hZVP3xUpYDLcZxi01TcKSrWH/wyxqnxyW1TE64Wvx3WOqElIVerKGzaZVg/uF3titNkQVpKmkc5WlrYeYzX1EsRJB+IY2GfwxHZlU8c5gK99mbg0blEdMWF1algDci4ZQ80Rr1zNT0dNqNyvTVOXHPsZMAZM6+Z5vrxkOjHO9+17rHHHiPxIOV44YUXjh79yapVq1euWs3iwfohGAl59NFDpD2mObAUWGj94DK8hxXXI7GMy+WKlEpkw1RvbYupH4SEcjYX+zj064jsc7gAywYHcTIKeu4vBzsfzuhl2D4q1aJMXoKIlfVDTHZjQn8kaJb0g3yaGEoh2K9dXKidng7yE6J5HO+c+rCv9JyLlWJ0TOsRqc0iXd102+XkXBF8KtS50q1IFdtb46SqSwNIb/Tje99z649N128hSSCFIAm59dbP3Pnluz796dtIOYgVKyc4oYWE0KsQ4sc/fpQWLqY5sBRYHP0gixKhyoQkr1E4JVm2ejtbZP0YfDiGaj2riQm1oL90ox8kHk4/CNYPWn+wKijNmFi5coISmi03/M3dd+8lPvnJm/0ShFchTkUeeeTHdfRDPp4rdsR92+Omg62eKpM387WMdjTtQOsOE+4jWF0/2pEO+M8r+0QXXeqShdYP928wV4YOhQz3ipclY2NnrV07EuuPwYffYrfYpYF+DBTt9CN8fpf0gx+h/+AHYf9K6YcTDxaMS1es8olVH97wkaefTr61/vTTz1z3l5OykfWjHz1y+vRp01wVJti1i30udB65/+CRHgTNph1oHax9xWafK8u2Vc5s3aXu6V4/BtmgHxq9ydMU6MdA0Y1+OAkhzPPzVROrCSchUTyY9159jfzalTbKJAnhVcgPf/ijF1980TRXhQl27WIfvZHnL/fJl/ha07QDrYM19fbgbpI96MfQGPQDjCRd7V/xEoTQz8/dEiTuX4l4XLpi5f0zM0ExSnb48GFegpB+nDp1yjRXhQl24eWN4avjxZe645fJy1/R8N/ecB78KiSE4yo/smkmm13y5Q+yg+GHext0QPdfypDJtx0l0//mvCp58CbpcHCyO3xTvaJRKhOcp1+eDx2wiXQInHnw4FHuvzkP6ujRI0fmis7feH+jFRL0gwlakTNdzExYAPpCG/3wv3/lJIRXIbx/RcsIpx9x/4p3rqKErLzk0pVBKyrsXVdeRUuQhx/+4QsvvGCaq0KinnoZdnVc8PLBTpehTAmvoUoRhYOQuEztx0Xhool4lEOtEw/tsGkHlCtXkSOvtKgz5QvnZcELjXIor25U5wiSmSbs2DnTnrq0Ch91HYj6RDIjWlIH6AcTtCJnupiZsAD0hdb6ESSEd7Eeeuhh0o/NW/6GlhG8BIkS4hYfJB6XXLoiCEWF3XDD/6GK5Kc7/Qgvi+jmgmB4v0ym330TetvKxWj1hlrcShyk4BicFJ5dsOZirkDDDqRlClfcosv0cVyXlA7L0ZqN6mJCUb6U4AKhJ2mmPQ/qqE9HAYudrwn0gwlakTNdzEzY0cM/5yju4RZP2jtQ8yGK/tAtyNLN+iNIyPLlF3z72//v5MmTt972mbB/FfVDFh/zrj+uef8Hqe7PfvazBdCPJMoLvkxxg5Jl3rz7RUaI5uGoWgGknlt1IFOmWj/ob9phV6BWo7pv5cxywh+NY9eZ0XNxHlLPrHBamGsC/WCCVuRMFzMTdvRY0OfkHZzj+Xwjutq/ogSvP3bu/CLFff79q5J+BAl54oknglaU7Omnn6Eq77vmAydOnCAdMs1VYSJXGvtC2ifs3gvjNlvUe+Q0XMYNGQmXsbDPYc+uvPbcuANpGWraZRYBush0a6PoOdSlYtyf6MRlpg6r+lbOzFZMexKbyJyHxLPvWJvPs1GEHW3MeAXoRxbox1DQTj/sEuS973W/v/vss89euW49SQirSNjCivpx0yc+EeSiZJ/97FYq/6U9d5J+zMx82zRXhY1cOszptIt04W273j6it/kmrPMWFtc9eDD83HoI614tnAcVHH3J4Nm+T6/RgWwZrROyU6Sfn4dDLkxX6kcokDZK45U0I+VNojR23YQ9D/ooQw3pVkBnoB9ZsnFcfzE7fvO8KCbpkJiKX6ePe19S3f/WeqglX56fC19uNy+j86qmS60sKVquPwQSD/4g1n/+53/REuSrX/vn1WsqH4HccceOoBjKvv71r6+aWH31+95//Phx0o+/+7v5//+PBaUcEPuOF4NkP2qQ4f03nQM6AP3IokM5WfwBEv3zU0oqMvrhfqjRZSY/1R6qu59CibWYtG7eYa5p2wp7Wzq01o+gIrIE2bz5o7QE0U9BSD/4K4SyhUV/r9+8ZWZmZnb2MDEz863NW26gYu9455WHDh2iu4Qyzz33ItPcIjOA+uHe0auttkFGFkYmH1QB/cii43jIcYG7iNG0boiikg33pUyqHn8uJSkQf6GLFaWybr2mucDSoRv9cHjxeCsvQfbuvZeWIM8///y3H3iA1hOyBIlfROdnIQGfQ4dW//0t//Dkk0/+6le/euqpp6+44qpzz73QNLfIDIh+yE6Rv7OHYPHBHTbPacC8QD+ylCPyQuiH+PS/x9WxLvQjRxv9IEQ/eAvL72IVD9JJQn79619/73vfv3vvPbt2f5HYuXPXjh0774hQesfOXQe/+c2f/OQnv/zlL0k8Hn300Pve9+e0+Fi+vM/6AcBiAv3IUo7IPkdvIkncj5luE8mH+1xk19Vl/8pVmeen1G1d1XSmJKWXFC31g5BdLF6CeAlx30XfsGGSv05IEkLCQO9If/GLX/z85z9/9tlnn1FGLymTxOPJJ//7jjt2XXrpmre85SJafEA/wJIC+pElG5F97HaLcv30otiAmt6nwn0msktJeX6e/eF3fqJe9fxcmq5qZUnRpX5oCQlLEJIQkoErrrhq8+aPkjDs2LGb/n7hCzvpLyc4TX9vu+32a6+dPO+8iwkvHm7xQdVNQwCMMNAPMLy0148+4j+PtKj77N08FKlZt0UTA/ioHzQF+gGGl6HUj25oF3PLter7qVmyRbH6fQADC/QDDC/Qj1qUa9X3U7Nki2L1+wAGFugHGF6Gc/8qxk39IVfznTX+ujVZ6RvXSb7+nrZ4KGeaSF3Tjyo8/++6q0Hly0dXRbs1PafV5/l59s4nRL4Jb2pxMdAC6AcYXoZcP9QPhmeRktkcn9Y/PCWRMZvZzE9aMnwB0HU4VQtXIP2J9aR83lvS7rye07rWM2cqLel0QuSXuHQt0A3QDzC8DLl+uBiXj2IUOvlNtP3lwVjXpV314u0z//BGPlPVYub1w2kiKZn2nHtIViwmQmgu2qrjTafLnrN1ifLQKk9I/Ep50UrqCrQG+gGGl+HWD35Jb4opUCZBNsZBv8GVhLla4XKR9KOokhxKyrsNunm96XTZs5D1nGRWnRDox4IB/QDDyyjoB2H+wwm3mVN7/4ejs4TO6sxmfqpLujRXKW0u2UM1vem0rm7Iei456XRC0v2rWEtKlhJ0FHQG+gGGl6F//hF2adJoJc/V9c+tC/S22h1Kn3snP5xeytThUpjXD5OEWht2XRV2UgzKJ8yPqGuk3ZqeuZaU6fDz7O5l9oSUfkm+1Bz0oyU91w/+TnX552AnpmbpCvKPcBjGx7e89nOP/9ayNl+ffv36x8c+vvv1aVtgiTCU+jHamIDeQ7r3DGHoOUOtH77i6Ub60Y1WgUED+jFwDLJ+0NKHNwZ1JuiGodYPWny8dv3u10A/lirQj4Fj0PRDf8kG3/boOQutHywbYqQf/DOC+v/L0zF9fNnu19CSYupl4rUrQpSXzNes352U/MgW99frR3Cyfobrvmb9WlN37HMzv+fKBOdjH9nCBcDwAv0AoJ8sqH6wVPD/kcc/K9tZP3ziNMuGj/s20z3tCJlrf+vjPpHox2lWhfEVM14toqiw3qyYIVHROWDYgX4A0E8WVD9EMyi/zv6V1wwX9zn/9z7iZEMUQpckIeEVRqofUSoSh3HB4dcc0I9RAvoBQD8ZTv2gv0oVCFegEIYqh/qQ5IDhBfoBQD9ZUP1gzZidWsOZrB9N9q9kD8ruXxV1o7poYTAO5VmIPiQ5YHiBfgDQTxZUP+glL0HEOuuHSzvZ4MfdRZR3zzP8OkM/Pw+HOupHKJA+M6dljaTBUAP9AKCf9Fw/FhRZlJh8sDSBfgDQT4ZLP9zSIT4LAQD6AUA/GXz98B/VjRtQWHwABfQDgH4yXOsPADTQDwD6CfQDDC/QDwD6CfQDDC/QDwD6CfQDDC/QDwD6CfQDDC/QDwD6CfQDDC/QDwD6SW/1I375fHZqInzKdnxim8/YNtHwc7flr6m3Q74AX3bFTZQPya+tkGV/sAsMCJX6AQBYHLQwBK3ImS5mJqxGfvMq+7I+PdEPUq8pLwDj4xunlarFHP8j87lDk1zLiV/4IRYwgEA/AOgzWhiCVuRMFzMTVmMWHPT2Xy9H+oVfUqQiMbmP/2MSgkQuK1SiMSYfDAjQDwD6jBaGoBU508XMhNXo30/08TdoCeuK2xJ67rlMjivvCoeX0xv1+kM2msh0ztzsLHsIDquXLGUl0JqhtURTlQ8GBOgHAH1GC0PQipzpYmbCGnjPSv/UbhASH4vDAoUUghNxdWJWKkVdlgpf13hm2Sg3xx405Nzkd9YP9gnxGHCgHwD0GS0MQStypouZCWsQhaAozJLAkV1boR9xp4tDNhmHdREDfgDOz7EL7SmJSlY2CF4PlY921g/G5StJA4MG9AOAPqOFIWhFznQxM2ENYQtrdt+0+1ssEUwQN/rhcqLMuMxe6Ef5sYegNUNriYFa56bBANJGP15dYDPNATDaaGEIWpEzXcxM2DIc0yWsh7gfn0CMT25zi5KSfrhD8sgk6gdLBftht8X+VaofumTwVlpYeP9+SeRal4c0PkcSkxtDP2OO9gAGB+gHAH1GC0PQipzpYmbClgnxXQVfVgvKlHyjH7zOKI4qMeA0m86ZVz9ExthcGSUJ4jYsbhJpCZ3B4mOQGWL9uPj2Q3R73bfhdZQ+Y8N9fLeRzc3dt+GM151x8dZD/hbkAsSG+8LLM8649j6aNoe2XnxGONSC3jjx3Z6771qXru4wv+wJ+qS1pny2TYEyXOXQ7W8z+Z3pyUnWtOuGhi9KD7tEaGEIWpEzXcxMWAD6wFl/+L+nMDpx6NOJYAAAAABJRU5ErkJggg==" alt="" />

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAOUAAACoCAIAAACQbb7zAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABH1SURBVHhe7Z29riTFFYD3Ye5iLBvJ2pXtxBaJl2iRkLWAwAkBSIRDAA5JLBkJZ3cl45SAhGQ1IQESkh8A3xeAACFEwJUf4Bqfvzp96nRVT0/P9MxU9yl9uqo59dN/31T3TNf0vffw4e+DMTx48PoH//z7O3/6nYsHpyR8DVoifA1a4t6LL74UBK1w74UXfhMErRC+Bi1x7/7954KgFcLXoCXC16AlwtegJcLXoCV2+/rv0ck1DIKjE74GLTG7r1eb7X8p3d5uN1f3XSlzdfXe9vbm+nG51HL1+OnNuJp9cCk3Tx9f3d9sb3mVNN1cv+wq7+Ts26Wb4+KPr29ut+9BRjdzwtb1OWTPW2CtDlmfUb7+8pe/3knRV9pIOZyQv96Ut3b4uI4/6sO4A7xvt7b+JWyX2xwJwopRUNfqwKVMY2ChV1cvX99MX5+ZfcV3U2EMcMx6XBV3gPft1ta/hO1ym8PA4OpGrwP9mMaODYe9R2eACezt6y+eex54/vlf2SBQ9hXXG1Y834M4OMmpapuPAXY7Ux574MqwkVmFWj/XcqYePu/YriSSOuRTPB1p7b+/GtD4srarqCa1za5YpLeNLIV74+B2CzHa9vq2YD7fUVQ6sK9sUWo+4t1eZLevb731FgjKUkLmo48+evbsmQ0yRV8BXV2z2bCVutm4C3RfZDtld7DYD0TxvYtvYiiv7xTbrXsJbeEoumGgV//itouq+SI8E7j3FfdGxrhFGHeL65BlsJR3FO0KuxRXx+7GVDp0aAbY7SsIComHVciAl5ygaIyvDG027gLKdOuK2wLB4r4YDg72Y2tyhT6uAnUowwAkHBgoooeh2CHXuZDtoqKubV+jFM96KCxieFtok2U3dTuqq489+N6y1aAVK2/CTkZdD0BiayHz9tvvcASKxvsK8OdWt21nOa6Mq+A6VGC14ai4zl2FC9kuKpK2A07kvaHTfhHD29LbUYVIbyV1N6bSrP54RvmqjkKG1YQERTt9vdo8tfuFzh2wrrCyFEzb2e2LtPuoLZ2ghg52tR9bE/JFXAXusD8aAfwhJuv8IreLlpKqoWXlzzS8CN7S+iKq62CbM7oTTKTrTeHdiKXQ53zXryDidF9p2+i8gScOCeIuwCAftlSt29Gp/laDsPMpUv5cUu6ntMss/QraoSyr9w1rvhpdTdf8jNulTvB4pqkvE3y04iLxMu92xzrkOyqVSoQ77DattxsH3ks7Oeh6gDOabKvgLKBJu4auYeNrUCsR7hDsSWACYz9vaV7cDDsvFRhZh0evib7CoDj1JG6BbiYPrsBuXx2gLH+f5eJBK+zrK5/99cLgvOztaxCckfA1aInwNWiJ8DVoifA1aIm5fP3oP38biWsYBAPM6Ku9+1Wj6Ou0Lwgd+DXkYd8X8m1GuTdzjK8eHWM2c/K3ldo5fRs1ZWdObjgre/j66NFLLjLAeX2lHm73kswtlL905FuL/LL2I4LJ7NxMXAe8bzrJtkn78PA9PzdjfX3y5NXvv//eBQdQX/tzD/QvMJOvMLhur/ebVGEXaqenzMfOzeTJAPzXFe1k1b6CrD/++COcFl18APaVZX348LeQ/+MfXkRtTdrLVx7w+Oxshz0O3lw/7WyD4JYm+JGv0ltvcr62pXkYUCed+rktBguHTVtBymaK5P3bawmpVmuo69ytDJfKfXYsSm88aVL6aUA56GeB+bXiWSmQcKuxpnvpVw/SwFafgN2+qqyQXNEA7CtI+corf4aMwpryX2Ckr7wrzYHXIyFBvFqVoD/MXI2vAvEmOLRw0+dkkryJGEUsA6vh+4eMue6sN8wy3IMI162/bJH2U/xpQCnoMihrUax+5V6wuPJ+q7m3Wdnhq5UVkisdoOgrvLRpD19xN3V7BGXYlAaex/f17KmltjfNU4cyYEAqDSeFA+Dishr1/lWO4YZcWVaFVgbq2MsAfDeyGWZZQH8F+sF8KX6jQDVZaF4ZiyoNB7aaK8zKkK9OVkiuwgDs6wcf/BW81OsBVlb/Asf2Ff52Bx4SjTqFPes6tEWUx6EIFqGljGu188iBZ7AOsqr1hq4UoKJ8Q6hCcSWHg0NLSREdwvOuyg0v1NdHj16CD1iyt1JydQZgXwFWFtKbb/6FI5axvmIEdxPmu73cBfV6oGsC1QbGV2prT462Gr6kgYc7x5f0/YBdIvYP2Ur/3ArgYXK4IZdmKwNSpLcivswslJp5P8Wgds4Z7KS4FGqVVcbSrAfotLzytiZ3OyujPm9NQH0dpu5rN7qYI4FB66WezuznLSmC+nVfpUJaCp9t4fBp3ldI9vRXo9i/Oc/i0d3dMF8ZFMmIBfAlATcp/jSg9nuBbCmYl6WQ/Wgw5Km11NGdkDUct9WQn5tL9HUCtEPFjAVTNOOUupydGX0diWs4DRgV7Al0qYSvc/l6AvR0Ruep5Q+uQPjasK/BCglfg5YIX4OWCF+Dlghfg5Y4vq9PnrzqIofw2muvP3v2jO+Qvf/++640WBvH9/WHH344lrIgK5sKSZ8xU4O+1tGvt070/Q7dp1jLd0mXwPF9BV2+++67oyirI6uVtTbK2q8h8e7lbLcPVvV956Uxi6/vvvvuUZRlWSG5B3hpBYvVaFalwtczMouv8PcoyrKsnMBUlhWSq8YUfeXMdudj+fPJ+RjvZnh005F0Tgmn+qQQbtLdfuNlBYczl6/Axx//A5R98OChFu0L2+kSXCS4aoxVR68HKAhRmuFFedE0XXdycGhaXffrA9tPKk35QpPNVqd6BcdiLl9hZAVZYZS1RXvx2WefiaF5gg9hribDStFw1k0nyDRCHbtpBqhTPu+4C6aRkpMfR0v5QhOK6IAdHIVZfD2urF988QVnYGStyQo48/pBEmjI125adF6TigqO2ny/CQMjPewQHtSDw5nF1yPKCtesrrSG1agYpDzqiPmkFwflRF8KMr1+er72mij8EwMXDKZxfF9/+umnQ2QFRNV9ZAWsRrUgGckfiTLh3OR8WxOSux4AYGzux32T3k8MgsM5vq8HygpMkHUyRcuDi+X4vrZF+NoW4Wv42hJr9zVoi/A1aInwNWiJ8DVoifA1aInwNWiJ5fhK30x1M04Gbtnznac1PA9meczu617/9aAG3/GyyVUAslujG5opUNKRtY4JKI0yr69P9vyvByIjpVqcky1lMl/rdwEGioLLZ0ZfQdZ9/+uByEipFudkSxk/vqbTvU5DoREXB1e8XCg8plNnZhV+j2BLC/8KofdTgl7D+K3BcZjLV5UVkisaQGSkpC9dnJM2UUgmceJWn+GaSwyGZZFyKYRI5Uopd66XHOyiultuiJNt47cGR2AWX62skFzpACIjpVqcky1l1BIa29AkDKZxjtPADEBI+5WWFscUGlLEOh1M4/i+OlkhuQoDiIyUanFOtpSxMukU6YJM3sippTt8zSJM/NbgcI7s64H/9aCGSGqSqwCUZcIM5Con60NLeRHF64EsosRvDQ5kxs9bJ8bKBIAZ5lev3XWtqza5tJeXau7zFiRsGL81OBLL8TVYA+Fr0BLha9AS4WvQEvce/uvnIGiF8DVoifA1aInwNWiJ8DVoicX66j5XKq7ag0/uvrq7+/Tz/7n4GN74+u7u9u6NT6a0DabRvK9OR0DjMtXAJC1VJvvKDffy9ZD3RsAswVeRkdLJfIXB9auv774NX0/LAn1VJGQSBF1z69CDz+++vbv7mdJXX4pVGvwWBLU1v7nDv+SrdPK1tIWari0MxB9SHa5w941UCPZlgb66jE0DvnKGNWXPXBCvVlPw01vK5L6yhQ++xGofqsTs95d3ILGNBNOI8VUcYkfBM45/+A1qqkbamiAuj6DOV1Ez75AHVEhgc/h6OHH9uq+v+FccpEQfuToRax3aIo0E+7IEXx0aF0lN0lKl04sy9npAz+nueqBrm2y2IroO9VrWFmkk2Jfmfa2h+jpctUw10hSHTGMVXHryOGo/b0nRoK9SIf+MBcO25oMJLNbXo6ODrosHpyR8HQsMjXE36+yEr0PAyf3T23RCj8H1Aghfg5YIX4OWiN9vBS0RvgYtEb4GLRG+Bi2xdl/50Ve3vYez4uO36PFY9CSs7olac8BP1xr+fwr2icfdo5jzx3K5h38tkiX7KpMGTHIVAD7GkOxhFolPcux5WfKUuIpw/PQ4fRAnvLze+MfcYiR8bQKRkVItzsmWMnyMt9vsMZf0OOztaY69lawoHI+s/afG4krmQ3L42gYiI6VanJMtZdIxhr9prEI/OILHPvepOymDQFzU/2cHXNqvj5G8DvUgL2+un2reXp9Qk8JTOLlt4fG0G1mEFoHYttt8tctNLpYF+uoyNmkTRY7x4/s4pKpSOG5JXCuwfD0/JMJ5IyU1yf9tQblO6j9VkLyS1icLMvp+kD6pf3nqLSwaFlUafbmaXW3zoFy/9Esjxtd0FJMWLG5+dFOFigGYz0ulEwxCDVG8XMd2YvKKa9WHKgx1ZT6WYWRgibxKnL9Mwlc5YHIZAGdGHmy6eMr0vMkOfMlFzuu/LSjWyToxeYUH0WGN8NuMyuO/daGygXVfxyzo7CzB1xoiqUmuApAdMBqHzIkyO7p8OHvXA/bAy8FWRbQm/9uCYp1eJ6U8rZiaBG3x24DN01RTVqzYHC8M8tN9rxq25W7dal8gS/Z1DPnBgwMvB6w73r2ji2fW7tOSFGEpHm8s5dMuRvLvR8t18k7ALiwd/k8K3RkgRcwHKdct20yt6FuQwhZhAfdz4YMrsHZfV451twnC11UTvgYtEb4GwYyEr0FLhK9BS4SvQUuEr0FLhK9BS4SvhbtQwcWyZF9l0oBJrgJA9zm7m6XXI25INved5ZJYgq8iI6VanJMtZXQ6iIsPEL6ekdX7ivKBfWmKaj6nLtksU0YgbTdYn/Myy6SbwoLjtNicZuxDVzyfEJKd2xVMY4G+uoxN2sSiM5hYU3Q0/SgAszhzr4tgBTO+ZvnNVicNyhQqO0EROiGhuZNgGmsfXxUeJtFOFC6NlN3MUTsGG0fNND9Ibh5gLR9MJnzt4Fn6nAE7+a8tBSOT0NbXbNQMX2dlCb7WEElNchWA/ix9zIOFaXaz1gTY4J6F0ooJX2dlyb6OgYXTs7nG6WpTXvJlKFZIQymUan17SRDXA3Ozdl9r8CctFwzOTvhagK4H9vtSNjgN4WsGX8XqjwGDSyN8DVoifA1aInwNWiJ8DVoifA1aInwNWiJ8Ldy+OiU6OwxXIL703cWSfZVJAya5CgDdTRVNIX/i3xfQ0mHx0tXIFVgzS/BVZKRUi3OypQxOS91zVDuWr25ueDCG1fuK8oF9Orc1cyjZ3J2yj/j7AmpYvgLRPiHxynC3/f+VcJZrmDOyQF9dxiZtYtErSDEDp7rIzCye9WIjWMGMr1l+z98XoHOloZ17kJVBL7F/DkpXvYVywzWw9vFVITPQErIhjZSsHRWpFpkuaZzjtNd8QmpbGB1dXN4zgwvlmmsgfO2AEzcfe56XzX9tKchRUicfNcf7Wrl+dX1WfC2IvgaW4GsNkdQkVwE4/e8LsiBdMKiysNz0bwrRUY6wmr2u4MWKLgOUJfs6Bj72dF7NTqx0tSkv2SqsQOpwqdYnpboeemIN+eqbp8tZDaKWva58q7geCPgs7ILB2QlfC+DoVfrkHpyd8DWDr2L1LBxcGuFr0BLha9AS4WvQEuFr0BLha9AS4WvQEuFr4fbVaaBbVnKPCtI676/uy5J9lUkDJrkKAN3YFE0hf8rfF9h+2N3andVjLXEBLMFXkZFSLc7JljI4LXXPW1lz+IovzTvHEb4qq/eVBjY9F5/09wXOV7Nonk8DKU2gyZZoS7nteligry5jkzaxsChw+GUKH051EQ8wu5nt9wV1X10FV9OV2uDiWfv4qlzRMIl2ogdppGTtqMiMwZ0oXESDHaY0HKbSSp5xEfI1Ve4+AmLE18xLObgSwtcOOHHzOMrzsvmvLQVFktBJrN5FZ81R51w/ol11mWRwcYnW7/WwBF9riKQmuQrAGX9f0CsFDSkPVw7duN6r2SuF4HpYsq9jYFHk9GouUulqU16a868MpVCq9cmbroeehT6fZ1JDYx6/czBo3jO6xGLpeli7rzXAD/vRJ7gQwtcCOGTSOdfFgzNz/7n/A41d8zsQIF6zAAAAAElFTkSuQmCC" alt="" />

  2. 配置Log4net
    配置目标:
    1. 启用内部调试
    2. 按照日期分割日志文件 1小时1个
    3. 按照日志容量分割文件 10KB 1个
    4. 按照日志大小, 时间分割文件
    5. 输出到SQL SERVER(需要先建立表)

    建立表代码如下:

    CREATE TABLE [dbo].[Log](
    [Id] [int] IDENTITY(1,1) NOT NULL,
    [AppDomain] [nvarchar](255) NULL,
    [Logger] [nvarchar](255) NOT NULL,
    [Level] [nvarchar](50) NOT NULL,
    [Thread] [nvarchar](255) NOT NULL,
    [File] [nvarchar](500) NULL,
    [Line] [nvarchar](50) NULL,
    [Identity] [nvarchar](50) NULL,
    [UserName] [nvarchar](50) NULL,
    [Date] [datetime] NOT NULL,
    [RunTime] [int] NULL,
    [Message] [nvarchar](4000) NULL,
    [Exception] [text] NULL,
    CONSTRAINT [PK_Log] PRIMARY KEY CLUSTERED
    (
    [Id] ASC
    )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
    ) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY] GO ALTER TABLE [dbo].[Log] ADD CONSTRAINT [DF_Log_Date] DEFAULT (getdate()) FOR [Date]
    GO

    配置如下:

    <?xml version="1.0" encoding="utf-8" ?>
    <configuration> <configSections>
    <section name="log4net" type="log4net.Config.Log4NetConfigurationSectionHandler, log4net" />
    </configSections> <appSettings>
    <!-- 开启内部调试 比如, 配置好了日志记录到数据库(Mysql、Oracle、Sql Server)等, 但就是记录不上, 又找不到原因时, 可以查看这个log排查原因 -->
    <add key="log4net.Internal.Debug" value="true"/>
    </appSettings> <system.diagnostics>
    <trace autoflush="true">
    <listeners>
    <add name="textWriterTraceListener" type="System.Diagnostics.TextWriterTraceListener" initializeData="Log/log4net.Internal.Debug.log" />
    </listeners>
    </trace>
    </system.diagnostics> <log4net> <!-- 按照日期分割日志文件 1小时1个 -->
    <appender name="LogFileAppenderByDate" type="log4net.Appender.RollingFileAppender"> <!-- 是否续写 -->
    <param name="AppendToFile" value="true" />
    <!--最小锁定模型以允许多个进程可以写入同一个文件 在使用RollingFileAppender的方式不支持多进程同時写一個日志文件; 使用FileAppender才可以 -->
    <!--<param name="LockingModel" value="log4net.Appender.FileAppender+MinimalLock" />-->
    <!--<param name="StaticLogFileName" value="true" />--> <!-- 保存路径 -->
    <param name="File" value="Log/" />
    <param name="DatePattern" value="yyyy-MM-dd HH.LOG" />
    <!-- 注意后缀必须要大写, 不然会生成位置类型的文件 --> <param name="StaticLogFileName" value="false" />
    <param name="RollingStyle" value="Date" /> <layout type="log4net.Layout.PatternLayout">
    <param name="Header" value=" ---- Start -------------------------------------------- " />
    <param name="Footer" value=" ---- End -------------------------------------------- " />
    <param name="ConversionPattern" value="%newline
    AppDomain: %appdomain %newline
    Logger: %logger %newline
    Level: %level %newline
    ThreadId: %thread %newline
    File: %file %newline
    Line: %line %newline
    Identity: %identity %newline
    UserName: %username %newline
    DateTime: %date{yyyy-MM-dd HH:mm:ss.fff} %newline
    RunTime: %timestamp(ms) %newline
    Message: %message %newline
    Exception: %exception %newline
    %newline" />
    </layout> </appender> <!-- 按照日志容量分割文件 10KB 1个 -->
    <appender name="LogFileAppenderBySize" type="log4net.Appender.RollingFileAppender"> <!--是否续写-->
    <param name="AppendToFile" value="true" />
    <!--最小锁定模型以允许多个进程可以写入同一个文件 在使用RollingFileAppender的方式不支持多进程同時写一個日志文件; 使用FileAppender才可以 -->
    <!--<param name="LockingModel" value="log4net.Appender.FileAppender.MinimalLock" />--> <!--按照文件的大小进行变换日志文件-->
    <param name="RollingStyle" value="Size" />
    <!--生成 log.txt, log.txt.1, log.txt.2-->
    <param name="File" value="Log/log.txt" /> <!--单个文件最大数量 好像只有在 按Size分割时有效-->
    <param name="MaximumFileSize" value="15KB"/>
    <!--保留的log文件数量 超过此数量后 自动删除之前的 好像只有在 按Size分割时有效-->
    <param name="MaxSizeRollBackups" value="3" /> <param name="StaticLogFileName" value="false" />
    <layout type="log4net.Layout.PatternLayout">
    <param name="Header" value=" ---- Start -------------------------------------------- " />
    <param name="Footer" value=" ---- End -------------------------------------------- " />
    <param name="ConversionPattern" value="%newline
    AppDomain: %appdomain %newline
    Logger: %logger %newline
    Level: %level %newline
    ThreadId: %thread %newline
    File: %file %newline
    Line: %line %newline
    Identity: %identity %newline
    UserName: %username %newline
    DateTime: %date{yyyy-MM-dd HH:mm:ss.fff} %newline
    RunTime: %timestamp(ms) %newline
    Message: %message %newline
    Exception: %exception %newline
    %newline" />
    </layout> </appender> <!--输出到文件-->
    <appender name="LogFileAppenderBySizeAndDate" type="log4net.Appender.RollingFileAppender">
    <param name="File" value="Log/" />
    <param name="AppendToFile" value="true" />
    <!-- 切割最多文件数 -1表示不限制产生日志文件数-->
    <param name="MaxSizeRollBackups" value="-1"/>
    <!-- 每个文件的大小限制 -->
    <param name="MaximumFileSize" value="10KB"/>
    <!-- RollingStyle Composite 综合 Size 按大小 Date 按时间 -->
    <param name="RollingStyle" value="Composite" />
    <!--如果要在这个文件名后面加上.log后缀,必须使用转义字符-->
    <!--<param name="DatePattern" value="&quot;Logs_&quot;yyyyMMdd&quot;.txt&quot;" />-->
    <param name="DatePattern" value="yyyyMMdd-HH.mm&quot;.log&quot;" />
    <param name="StaticLogFileName" value="false" /> <layout type="log4net.Layout.PatternLayout">
    <param name="Header" value=" ---- Start -------------------------------------------- " />
    <param name="Footer" value=" ---- End -------------------------------------------- " />
    <param name="ConversionPattern" value="%newline
    AppDomain: %appdomain %newline
    Logger: %logger %newline
    Level: %level %newline
    ThreadId: %thread %newline
    File: %file %newline
    Line: %line %newline
    Identity: %identity %newline
    UserName: %username %newline
    DateTime: %date{yyyy-MM-dd HH:mm:ss.fff} %newline
    RunTime: %timestamp(ms) %newline
    Message: %message %newline
    Exception: %exception %newline
    %newline" />
    </layout> <filter type="log4net.Filter.LevelRangeFilter">
    <param name="LevelMin" value="ALL" />
    <param name="LevelMax" value="OFF" />
    </filter> </appender> <!--输出到SQL Server-->
    <appender name="AdoNetAppender" type="log4net.Appender.AdoNetAppender">
    <bufferSize value="100" />
    <connectionType value="System.Data.SqlClient.SqlConnection, System.Data, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />
    <connectionString value="Data Source=.;Initial Catalog=log4netTest;User ID=sa;Password=sa" />
    <commandText value="INSERT INTO [dbo].[Log]
    ([AppDomain]
    ,[Logger]
    ,[Level]
    ,[Thread]
    ,[File]
    ,[Line]
    ,[Identity]
    ,[UserName]
    ,[Date]
    ,[RunTime]
    ,[Message]
    ,[Exception])
    VALUES
    (@appDomain
    ,@logger
    ,@log_level
    ,@thread
    ,@file
    ,@line
    ,@identity
    ,@userName
    ,@log_date
    ,@runtime
    ,@message
    ,@exception)" /> <parameter>
    <parameterName value="@appDomain" />
    <dbType value="String" />
    <size value="255" />
    <layout type="log4net.Layout.PatternLayout">
    <conversionPattern value="%appdomain" />
    </layout>
    </parameter> <parameter>
    <parameterName value="@logger" />
    <dbType value="String" />
    <size value="255" />
    <layout type="log4net.Layout.PatternLayout">
    <conversionPattern value="%logger" />
    </layout>
    </parameter> <parameter>
    <parameterName value="@log_level" />
    <dbType value="String" />
    <size value="50" />
    <layout type="log4net.Layout.PatternLayout">
    <conversionPattern value="%level" />
    </layout>
    </parameter> <parameter>
    <parameterName value="@thread" />
    <dbType value="String" />
    <size value="255" />
    <layout type="log4net.Layout.PatternLayout">
    <conversionPattern value="%thread" />
    </layout>
    </parameter> <parameter>
    <parameterName value="@file" />
    <dbType value="String" />
    <size value="500" />
    <layout type="log4net.Layout.PatternLayout">
    <conversionPattern value="%file" />
    </layout>
    </parameter> <parameter>
    <parameterName value="@line" />
    <dbType value="String" />
    <size value="50" />
    <layout type="log4net.Layout.PatternLayout">
    <conversionPattern value="%line" />
    </layout>
    </parameter> <parameter>
    <parameterName value="@identity" />
    <dbType value="String" />
    <size value="50" />
    <layout type="log4net.Layout.PatternLayout">
    <conversionPattern value="%identity" />
    </layout>
    </parameter> <parameter>
    <parameterName value="@userName" />
    <dbType value="String" />
    <size value="50" />
    <layout type="log4net.Layout.PatternLayout">
    <conversionPattern value="%username" />
    </layout>
    </parameter> <parameter>
    <parameterName value="@log_date" />
    <dbType value="DateTime" />
    <layout type="log4net.Layout.RawTimeStampLayout" />
    </parameter> <parameter>
    <parameterName value="@runtime" />
    <dbType value="Int32" />
    <layout type="log4net.Layout.PatternLayout">
    <conversionPattern value="%timestamp" />
    </layout>
    </parameter> <parameter>
    <parameterName value="@message" />
    <dbType value="String" />
    <size value="4000" />
    <layout type="log4net.Layout.PatternLayout">
    <conversionPattern value="%message" />
    </layout>
    </parameter> <parameter>
    <parameterName value="@exception" />
    <dbType value="String" />
    <size value="8000" />
    <layout type="log4net.Layout.ExceptionLayout" />
    </parameter> </appender> <root>
    <!-- 配置日志的级别,低于此级别的就不写到日志里面去 OFF、FATAL、ERROR, WARN, INFO, DEBUG, ALL -->
    <level value="DEBUG" />
    <appender-ref ref="LogFileAppenderByDate" />
    <appender-ref ref="LogFileAppenderBySize" />
    <appender-ref ref="LogFileAppenderBySizeAndDate" />
    <appender-ref ref="AdoNetAppender" />
    </root> </log4net> <startup>
    <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />
    </startup>
    </configuration>
  3. 调用Log4Net

    首先在AssemblyInfo.cs类添加一行代码

    [assembly: log4net.Config.XmlConfigurator(Watch = true)]

    编写调用方法

    class Program
    {
    private static readonly ILog log = LogManager.GetLogger(typeof(Program).Name); static void Main(string[] args)
    {
    for (int i = ; i < ; i++)
    {
    try
    {
    int a = , b = , c = ; c = a / b;
    }
    catch (Exception ex)
    {
    if (log.IsErrorEnabled)
    {
    log.Error(null, ex);
    } if (log.IsDebugEnabled)
    {
    log.Debug("Debug", ex);
    }
    }
    } Console.ReadKey();
    }
    }

查看运行结果:

  • 路径下生成的文件
    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAmsAAADpCAIAAAD0yedJAAAgAElEQVR4nO2dv27rTJPmfU+b+Rr2IjZSdvYCXmBSKRqAG04gQPlIgSBIoGT52ImBDwY2ULCDF+PgnA8v/I6x0TEpUX9IyRNQbHZXVTcpUZKp4+cHB1aT1V0UKT6s7mbXzQcAoDTBMvlsF74Eh37P//i3P/71/6pP/+9f/9f/+ff/OrVPvyNf7Xo++fHenLY6AH5vFquvdcf5LA77nv/r4X//y8Nf+WcoaFm+2vV88uOFggJwAMvN9rNd+BKU/p7//7//yx//k+olFLQsX+16PvnxQkEBOIBNsvtsF74E+J4vw1f7nk9+vFBQAA4g2X6tO85nge/5Mny17/nkxwsFBeAAdl/rhvNp4Hu+DF/tez758UJBAQAAgGOAggIAAADHAAUFAAAAjgEKCgAAABwDFBQAAAA4BigoAAAAcAxQUAAAAOAYoKAAAADAMUBBAQAAgGOAggIAAADHUFVBHx8fHx8fwzAS/9lsNifxEgAAAKgbJ1DQJI6/f//+55//ud0m6T9JEn///v35+fnu7i6chydxFAAAAKgVVRX04eEhjjc///nX6+vbdpuk/+x225///Ovp6SmKoul0GgTBSXwFAAAA6kNVBb2/v99s1nG8SeI4SeLtNtluk91uu9ttJ5OJ7/u+708mk5P4CgAAANSHqgo6nU4369Vms443myTeEBH9+/X1548fooKOGjcpt94LKcpL9oWNUfbpxbvdm2mFYr1GJakhKaJWpVvRdtb25PuPGmKT6siZk0Z1Dm9BPZl1vn3rzLJPb+PWtz154X63tGDWSTe3xm/69rdxixZlJpmFtl2spKQnbGdtT2F/oXXW1llRDijI93R0ZRXqASeAX6Lyxbbfosrexq3UwjibF7ocPz4+qivoZDL5x3/8dP/5vk/NXjxvLzVKZkaNvfyokhfv9uam0WhosjRq2JSTbCfqNWpYNemgVoSd9W1mC5KCjhqaH6asm59GDeeBgnqR/pI7He3HO+uIv+S3cSv9/etCqt8lZh1628hM3sbjmdrHVkl5T+SduaPqM2vdZX5OyDd23P564axz4ftuAYce4NVDL1HhYtP33Zdo27R/38atC57Lqgrq+/5qGa1Xy/V6tVlrkWiSR6KCguZkuqOplilFI1PbnKGZpZIX77bhUX2zWha2IissL+QK+uLdmjvlBWwTuD5mpm5JN8G3cUtJXravrlVv41ZnbGqXMjFqaY3frJWU8sTitrNQasq155k4uYJe+rZbxBdUUNvx0gc59eWYZ4w8D13u26uqoMPhsDAGHQ6H9gr2wmOo5sgWEOa9nKLEyZW8eLeNEY8QRTfKtCIrqKC6TEEFlczcgoD+DuhakvdLiWpo3BiUXbrZvGkIApoZyJWU88Tidl7Gn/Mt+9dAQfNDTL8+PUhpteTePVKJdkOWe72NNiy37FnnW2s82++4d4V886Sa1GSsd8VrHZL10fTz4rhE+dWVfWN0LEELRy/4vVVV0MFgEC0Wy2hhRqLreB+JxtttMhgMbOZ6j20JBeV2BlIlmkSVjkHdrUg7i7VLCiqNfJIniEzAMRB6ddiCOf1Wm9+lmfjlvbU2YSQ1llNQ0RO321rFzEgq+FwFNe6eWmxu6ycXK1EKSoaF8/5q+9egK+g3/q9WpeiqttHl8FeAHrj0ReyfMNjkgs957qiqoP1+vzAG7ff7kqkx7neggmbqlIeLciCbl6j/TJNSrQjF5s5pmFtofUAMahNvUGdkLdHHbfTeWiJ+eYm+jXZvGbfyAxXUdmNmO0thL2/d3dY54R2wbBqJMbJZUkGzxxf+PQp9vPYYVOhLzP4XXC2s52tBxjMtl2sa6Fueomx256GqgvZ6vUUYLubzaDFPI9HVcrleaZFoHPd6PWYnTbspMQ4q7e6oxMunvRZMcD2kFVYsC+hh46B86hMU9Oqw6lZn9uEYqXwbt/KOPMV+rEe6y0sNOsZBC/wTpnGIAspHpJy1npESQ5iHKqiq5OwKemg9Xwv5x0J3UdG7+jL1b+yiY9pVFbTb7RbGoN1ul5qJ/aBWLWHyZHs3xVrJUb241jdgyM6kan12sTgXV9myibnGJijo1SFpiXoiJrqU/8ylUT3Vd+gecLRW4vSkwG2mxWTab5mjPi/8YMWO5fK9uPrNmPTiqgFqYehVe/GinILKrkJBM9TX7Lqm8i+HjHhfZQzabrfDIJgHQR6JLhbLSEWiq81m3W63iRV5jXKvFdmLkqaU6XKVv0ppnXUjV3KQgha2QhSUf1QKKkW/WjGt3/GqKLgC9N99PjCjTxKiu4vjNlqHItVcEqNaK3F54nSbfbR0QBbGu+dEeubIu0bHfPRSGjrTR85stVGdNr5GVdDplI1Bqau2Xlx5rO/3RfixWC62D3L2s0cS+9k8M1UV1PO8whjU87yT+ArA1VL0RslpTAAAF6WqgjabzeDXr/D9PQze50EwD8PFPDQj0WWz2TyJrwAAAEB9qKqgf5TjJL4CAAAA9QEZtgEAAIBjgIICAAAAxwAFBQAAAI7hMAX9H/+GP/zhD3/4w981/Z2PgxUUAAAAuBZqraCPj4+Pj49hGIn/bDabk3kKAAAAHEjdFTSJ4+/fv//5539ut0n6T5LE379/f35+vru7C+fhyZwFAAAADqHWCvrw8BDHm5///Ov19W27TdJ/drvtz3/+9fT0FEXRdDoNguBk/gIAAAClqbWC3t/fb7IcLEkSb7fJdpvsdtvdbjuZTHzf931/MpmczF8AAACgNLVW0Ol0mi4fH282SZpVWxPRv19ff/74ISqoWkSdL7luLKpuJDPRl6TPCkUrnlilsB7Zxf1WshQ+sRKOhbWolWLR+N8UI92Svjq2ZdX3bDVssvytkFsiM1HrZ5tLa7NKSnrCdiYretvWYne0dVZmNANclUXEjcqwAvHnwy8k+dKiicyyBfotV23NFXQymRSuLO/7PjV78bxcAFUmE5KYLM331XCm2+ZWqlwJWpl6mH/MRN9maKBwLA5zKOhvSfpL7hQnuc5zh9lyb8069I6e52oZ04SXvJLynsg7c0fVZ9a6y/ycHJr8q1R2szolQvlq2c34heS4tIwMNtnXRLLfGFa1VlDf91fLaL1artdpVu0sEk3ySFRQ0JxMj8pl2B41SuXlfvFuGx4ROmc9MqLOOsSXJwqFgn4pZqZuSTdBlbHMkhz7bdzqjFlebVv+s3IZtouSvIgK68hZRrS1BtnNjtm/RJruT+OrKWgKv5BsV+Y++7z5lCjmlfv4qLmCDofDwhh0OBzaq9zLjCE+I1u4mHemqlhPsHrxbhsjFiq66nH7RsrsJu68oaowq0DsSs4Kbz0PWnttzOhDNOshVGpoqJCySzebCiUIaGYgV1LOE4vbeRl/zrfsXwMFzQ8x/fr0IKXVknv3SCXaDVnu9TbacGXGnu133LtCvnlSTWoy1rvitQ7J+mj6JThEQcfkEjDDUdOo1go6GAyixWIZLcxIdB3vI9F4u00Gg4GtQr3fs4SCUjvJKitzKShv3+YdMXHl6WZ1uVsko6y08MW7RZrta8P1yEx2kMRPy6xtEUZSYzkFFT1xu61VzIykgs9VUOPuqcXmtn5ysRKloGRYmOTqFs11Bf3G/9WqFF3VNroc/u0pr6D86UIfB6UmtVbQfr9fGIP2+32pMmOuz4EKuhcibpWXlFJQTYqFKULMJI1ui47F2WKmoC/eLT9IejxQ0OtC1hJ93EbvrSXil5fo22gPrHErP1BBbTdmtrMU9vLW3W2dE94By6aRGCObJRU0e3zh36PQx2uPQYW+xOx/wdXCer4Oh8SgM3IlknHQ6+nF7fV6izBczOfRYp5Goqvlcr3SItE47vV6rCYWzJUbB6W7UysvmxV7w3ppnfXI0I0WAbUFplDQr4ZVtzqzD8dI5du4lXfkGdND39iIqDX8c4yDFvjHii0Cylp313pGSgxhHqqgqpKzK+ih9XwdDhsH1TsLzG+Mfsu1VtBut1sYg3a7XWom9o9aZ9UyHVIhn9WqXAwqho5WEz5RiM6BspvrnbdiL646CvTiXi/SD149ERNdyn/m0qie6jt0DzhaK3F6UuA202Iy7bfMUZ8XfrBix3L5Xlz9Zkx6cdUAtTD0ut8tb79IQWVXoaApByqocVauNgZtt9thEMyDII9EF4tlpCLR1WazbrfbxIq8XrkXiuy1Ssv7KtoeN2b4Jr7X6VJQqR4B98wg1gFMpya5FdQynyl/vRUzia4O/QefD8zok4To7uK4jdahSDWXxKjWSlyeON1mHy0dkIXx7jmRnjnyrtExH72Uhs70kTNbbVSnja9RFXQ6ZWNQ6qqtF1ce6/vdOVhBP/JHEvvZrLmCep5XGIN6nncyf78OZjcvuHKK3ig5jQkAgFJrBW02m8GvX+H7exi8z4NgHoaLeWhGostms3kyf78MowY6cQEAoCq1VtA/ynEyf39z9C5hBKAAAFCVWisoAAAAUFugoAAAAMAxQEEBAACAY6iXguIPf/jDH/7wd0V/5+MwBQUAAABASlUFfXSy2WxO4iUAAABQN06goEkcJ0m83eYJQZMk3u22z8/Pd3d34Tw8iaMAAABAraiqoA8PD+ny8UREd7vt09NTFEXT6TQIgpP4CgAAANSHqgp6f3+/yXKwEBGdTCa+7/u+P5lMTuIrAAAAUB+qKuh0Ok2Xj483myTNqq2J6N+vrz9//BAVVC3ubqTzouusGylMPow1e7JC0YqnXSmsR3ZRy55iYFgJx8Ja1EqrLdYnVwtqgJFuSV9C3LLqe7YaNln+Vsihkpmo9bPNpbVZJSU9YTuT5eNta7E72roEcov62uJZargvnerk2uCn1XqijURm2QL9lqv2zFRV0Mlksl4tRRFVOur7PjV78bxcAFXSEpKn7MW7vblpNJzptrmVKleCVqYe5h8z0bcZGigci8O8ioK6vAKfSvpL7hQnuc5zh9lyb806VKPyXC1jmvCSV1LeE3ln7qj6zFp3mZ8HR4sOmYSC1hx+WkudaO28kuw3l9PQqgrq+/5qGa1Xy/U6zaqdiWjiVNCcTI/KZdgeNUrl5X7xbhueKz8orUfGliLbJmA8gegZYtBC9QefxszULemurTKWWZJjv41bnTHLq23Lf1Yuw3ZRkhdbDinbbYho66dkN4OC/n4clt2MpUIX88qdnaoKOhwOl1FERDQ2RXQ4HNor2OuBIT4jW7hIM2rKVi/ebWPkzA8qZua0+kbK7CbufKKqkOcHFfqX7flBoaC1ZUYfolmfp1JDQ4WUXbrZVChBQDMDuZJynljczsv4c75l/9oqqJSwOv8yvlbuzWvgEAUdd9hYghaOXvDcVlXQwWAQLRbLaGGK6DoT0Xi7TQaDgc1c7/csoaDUTrLKylwKytu3eUdMaKXOutwtklFWWvji3Vr0HQpaWwrv7PkOkvhpmbUtwkhqLKegoidut7WKmZFUUBMFJSNhXEGN+yzC0ppRXkHFyQWfMgxaWUH7/X40nysRXa2W65UhokkS9/t9ydSY63Oggu6FiFvlJaUUVJNiYYoQM0mj26JjcbaYKaiZQNsSiUNBrwtZS/RxG723lohfXqJvozd6Y5rRgQpqk1C2sxT28tbdbZ2TY2NQMlEKUWi9OCQGnZErkXQzXE8vbq/XW4ThYj6PFvO9iC5NEY3jXq/H7FgwV24clO5OrbxsVuwN66V11iNDN1oE1BaYQkG/Glbd6sw+HCOVb+NWazzWQyhtOinpA7aGf45x0AL/WLFFQFnr7lrPSBUFhWzWlsPGQc2ZunSC7sVOc1UF7Xa78yAwRDRSIrpKXxXtdrvUTOwftc6qZYKhQj6rVbkYVAwdrSZ8ohCdA2U31ztvxV5cdRS8F7fEFwJqgfSDV0/ERJfynzm79SupIiZib6t1Qq/dkwK3mRaTab9ljvq8HD0OOutYB4PBp3OgghpX9NXGoO12OwwCQ0QXi6Upou12m1iR1yv3+pC9Vml5X0Xb48YM38T3Ol0KKtUj4J4ZxDqA6dQkt4Ja5jPlr7d6gongBqgP+g8+H5jRJwnR3cXeRG08lGouiVGtlbg8cbrNPlp6QAvj3XNykplE6MWtGwcr6Ef+TKSPg170GamqgnqeF76/h8F7JqKhKaLLzXrled5JfP1amN284Mo5YuIK5roAUHeqKmiz2Qx+/VIiOpdEtNlsnsTXL8WoUfCqDQAAgM+lqoL+UY6T+PoF0LuEEYACAECtQYZtAAAA4BigoAAAAMAxQEEBAACAY4CCAgAAAMcABQUAAACOoaqCPjrZbDYn8RIAAACoGydQ0CSOVVbtNCFoksS73fb5+fnu7i6chydxFAAAAKgVVRX04eEhXT6eiOhut316eoqiaDqdBkFwEl8BAACA+lBVQe/v7zdZDhYiopPJxPd93/cnk8lJfAUAAADqQ1UFnU6n+xwsm02SZtXWRPTv19efP36ICqoWdzfSedF11o0UJh/Gmj1ZoWjF064U1iO7qGVPMTCshGNhLWqlxy/WJzcEaoKRbklfw9yy6nu2GjZZ/lbILZGZqPWzzaW1WSUlPWE7k+Xjyf5C66ytcyP7YGzRUsPxleVBbeEXknxp0URm3zozKb/6haiqoJPJJF0+nouo0lHf96nZi+flAqgykJA8ZS/e7c1No+FMt82tVLnSmTL1MP+Yib7NEDDhWBzmFRRUaAjUhPSX3ClOcp3nDtOFlCQmI/qQ52oZz9Q+tkrKeyLvzB1Vn1nrLvOzIPigcMgkFLTm8AvJcWnpGevVeSXpdy6noVUV1Pf91TJar5brdZpVOxPRxKmgOZkelcuwPWqUysv94t02PFd+UFqPjC1Ftk18eQLRE8egloZATZiZuiXdtVXGMkty7LdxqzNmebVt+c/KZdguSvJiyyFluw0Rbb18djPuwwcU9Po5LLuZKZT6Kb7o6a6qoMPhcBlFRERjU0SHw6G9gr3MGJowsoWLNKOmbPXi3TZGzvygYmZOq2+kzG7izieqCnl+UKF/WcsPWs4x8PnM6EM0629UamgogLJLN5vqIAhoZiBXUs4Ti9t5GX/Ot+z/KQoq3m0Pyg+K7KB14xAFHXfYWIIWjl7w3FZV0MFgEC0Wy2hhiug6E9F4u00Gg4HNXO/3LKGg1E6yyspcCsrbt3lHTFzBH6vL3SIZZaWFL96tTd/Rh1tXChMC5ztI4qdl1rYII6mxnIKKnrjd1ipmRlLBpdVIOhI+EsYV1LjPIiytGeUVVJxc8DmZ06sqaL/fj+ZzJaKr1XK9MkQ0SeJ+vy+ZGnN9DlTQvYpwq7yklIJqUixMEWImaXRbdCzOFjP5MxNoWyJxLpRiQ6AmyFqij9vovbVE/PISfRu90RvTjA5UUJuEsp2lsJe37m7rbIg+fJSKQclEKUSh9eKQGHRGrgLSzXA9vbi9Xm8Rhov5PFrM9yK6NEU0jnu9HrNjwVy5cVC6O7XyssmqN6yX1lmPDN1oEVBbYHpyBcXwZ82x6lZn9uEYqXwbt1rjsR5CadNJSR+wNfxzjIMW+MeKLQLKhx6dtZ4Fmw8fpRUUsllbDhsHNWfq0gm6FzvNVRW02+3Og8AQ0UiJ6Cp9VbTb7VIzsX/UOquW6ZCKxKxW5WLQgoiOmPCJQnQOlN1c77wVe3HVUfBe3MKGQE2QfvDqiZjoUv4zZ7d+JRPEROxttU7otXtS4DbTYjLtt8xRnwlXU2XGQWcd62Aw+HQOVFDjir7aGLTdbodBYIjoYrE0RbTdbhMr8nrlXpeytx0t76toe9yY4Zv4XqdLQaV6BNwzg1gHMJ2a5FZQy3ym/PVWj5jYGwI1Qf/B5wMz+iQhurvYm6iNh1LNJTGqtRKXJ0632UdLD2hhvHsO7D58lFNQswqEo/XiYAX9yJ+J9HHQiz4jVVVQz/PC9/cweM9ENDRFdLlZrzzPO4mvXwuzmxdcOUdMXMFcFwDqTlUFbTabwa9fSkTnkog2m82T+PqlGDUQZgIAQK2pqqB/lOMkvn4B9J5aBKAAAFBrkGEbAAAAOAYoKAAAAHAMUFAAAADgGKCgAAAAwDFAQQEAAIBjqKqgj042m81JvAQAAADqxgkUNIljlVU7TQiaJPFut31+fr67uwvn4UkcBQAAAGpFVQV9eHhIl48nIrrbbZ+enqIomk6nQRCcxFcAAACgPlRV0Pv7+02Wg4WI6GQy8X3f9/3JZHISXwEAAID6UFVBp9PpPgfLZpOkWbU1Ef379fXnjx+igqrF3Y10XnzNdC2FyYexZk9WKFrxtCuF9cguatlTDAwr4VhYi1rp0Yv1yVlMQV0w0i3pa5hbVn3PVsMmy98KuSUyE7V+trm0NqukpCdsZ7J0O9lfaJ21dWZyB1mTRobtfWo4vrI8qC38QpIvLZrI7FtnJuVXvxBVFXQymaTLx3MRVTrq+z41e/G8XABVBhKSp+zFu725aTSc6ba5lSpXglamHuYfM9G3GRooHIvDvIqCjkY0GxqoCekvuVOc5DrPHaYLKUlMRjQqz9Uynql9bJWU90TemTuqPrPWXebnYTbLpZ7n8SifOhTUCn4hOS4tPWO9Oq8k/c7lNLSqgvq+v1pG69VyvU6zamcimjgVNCfTo3IZtkeNUnm5X7zbhufKD0rrkbGlyLapF08geloFLeMD+ERmpm5Jd22VscySHPtt3OqMWV5tW/6zchm2i5K82HJI2W5DRFsvmWHb0SgU9No5LLuZKZT6Kb7o6a6qoMPhcBlFRERjU0SHw6G9gr0YGOIzsoWLNKOmbPXi3TZGzvygYmZOq2+kzG7izieqCnl+UKF/WcsPWsovUANm9CGa9XkqNTRUSNmlm02FEgQ0M5ArKeeJxe28jD/nW/b/DAUV2jw0Pyiyg9aNQxR03GFjCVo4esFzW1VBB4NBtFgso4UpoutMROPtNhkMBjZzvd+zhIJSO8kqK3MpKG/f5h0xoZU663K3SEZZaeGLd8v1fS+vkM+aUpgQON9BEj8ts7ZFGEmN5RRU9MTttlYxM5IKLnfH2iug0CAfCeMKatxnEZbWjPIKKk4u+JzM6VUVtN/vR/O5EtHVarleGSKaJHG/35dMjbk+ByroXoi4VV5SSkE1KRbm6DCTNLotOhZni5mCmmOZlkjcHoMid2gdkbVEH7fRe2uJ+OUl+jZ6ozemGR2ooDYJZTtLYS9v3d3WeZl1WERdIgYlE6UQhdaLQ2LQGbkSSTfD9fTi9nq9RRgu5vNoMd+L6NIU0Tju9XrMjgVz5cZB6e7Uystmxd6wXlpnPTJ0o0VAbYHp2RQU/bg1xapbndmHY6Tybdxqjcd6CKVNJyV9wNbwzzEOWuAfK7YIKGvdXeuZYa2WVFDIZm05bBzUnKlLJ+he7DRXVdButzsPAkNEIyWiq/RV0W63S83E/lHrrFomFirks1qVi0HF0NFqwicK0TlQdnO981bsxVVHwXtxVUMjVhuoFdIPXj0RE13Kf+bs1q+kipiIva3WCb12TwrcZlpMpv2WOeozkU3FdeolL9H/wZyi2nKgghpX9NXGoO12OwwCQ0QXi6Upou12m1iR1yv3apC9Vml5X0Xb48YM38RXJF0KKtUj4J4ZxDqA6dQkt4Ja5jPlr7d61KTUS6zgE9F/8PnAjD5JiO4u9iZq46FUc0mMaq3E5YnTbfbR0gNaGO+eBdebrYfOJEIvbt04WEE/8mcifRz0os9IVRXU87zw/T0M3jMRDU0RXW7WK8/zTuLr1wIvff5WHDFxBXNdAKg7VRW02WwGv34pEZ1LItpsNk/i65cCs4UAAKDmVFXQP8pxEl+/AHqXMAJQAACoNciwDQAAABwDFBQAAAA4BigoAAAAcAxQUAAAAOAYoKAAAADAMVRV0Ecnm83mJF4CAAAAdeMECprEscqqnSYETZJ4t9s+Pz/f3d2F8/AkjgIAAAC1oqqCPjw8pMvHExHd7bZPT09RFE2n0yAITuIrAAAAUB+qKuj9/f0my8FCRHQymfi+7/v+ZDI5ia8AAABAfaiqoNPpdJ+DZbNJ0qzamoj+/fr688cPUUHV4u5GOi+6zrqRwuRDXFxdtOJpVwrrkV3UsqcYGFbCsbAWtdKqi/UVZJQBn4WRbsm+CrpaLjtbDZssfyvklshM1PrZ5tLarJKSnrCdyfLxZH+hddbWZZDSbxgZtvep4fjK8qC28AtJvrRoIrNvnZmUX/1CVFXQyWSSLh/PRVTpqO/71OzF83IBVBlISJ6yF+/25qbRcKbb5laqXAlamXqYf8xE32bol3AsDvPqCqofGqgJ6S+5U5zkOs8dpgspSUxGNCrP1TKeqX1slZT3RN6ZO6o+s9Zd5ueEf0UfTpmEgtYcfiE5Li09Y706ryT9zuUuyKoK6vv+ahmtV8v1Os2qnYlo4lTQnEyPymXYHjVK5eV+8W4bnis/KK1HxpYi2ya+PIHo6RVUOjRQE2ambkl3bZWxzJIc+23c6oxZXm1b/rNyGbaLkrzYckjZbkNEWy+dYVv4ivZuQEGvmsOym5lCqZ/ii57uqgo6HA6XUURENDZFdDgc2ivYy4whPiNbuEgzaspWL95tY+TMDypm5rT6RsrsJu58oqqQ5wcV+pe1/KAa8qGBmjCjD9Gsz1OpoaFCyi7dbCqUIKCZgVxJOU8sbudl/Dnfsv9lFVT6ijI3DsoPiuygdeMQBR132FiCFo5e8NxWVdDBYBAtFstoYYroOhPReLtNBoOBzVzv9yyhoNROssrKXArK27d5R0xc2sXqcrdIRllp4Yt3K43tiocGakJhQuB8B0n8tMzaFmEkNZZTUNETt9taxcxIKrjYHUv8ipQbZCSMK6hxn0VYWjPKK6g4ueBzMqdXVdB+vx/N50pEV6vlemWIaJLE/X5fMjUmxByooHsh4lZ5SSkF1aRYmCLETNIQsOhYnC1mCmom0LZE4mS81XZooCbIWqKP2+i9tUT88hJ9G73RG3NoDlRQm4SynaWwl7fubuscyF9R7kZRDEomSsQvzm4AABQeSURBVCEKrReHxKAzciWSbobr6cXt9XqLMFzM59FivhfRpSmicdzr9ZgdE4Fy46B0d2rlZbNib1gvrbMeGbrRIqA2QTutgo7shwZqglW3OrMPx0jl27jVGo/1EEqbTkr6gK3hn2MctMA/VmwRUEG1XLWeAekr0t0oo6CQzdpy2DioOVOXTtC92GmuqqDdbnceBIaIRkpEV+mrot1ul5qJ/aPWWbVMh1TIZ7UqF4MWvBdCTPhEIToHym6ud96KvbjqKHgvbuGhgZog/eDVEzHRpfxnzm79SqqIidjbap3Qa/ekwG2mxWTab5mjPjdHjoPOOtbBYPDpHKigxhV9tTFou90Og8AQ0cViaYpou90mVuT1yr0cZFGW5X2VDz0OM8I38b1Ol4JK9Qi4ZwaxDmAaGboV1DKfKX+91RNM5EMDNUH/wecDM/okIbq72JuoDfZRzeUBmFyJyxOn2+yjpQe0MN49LyeYSYRe3LpxsIJ+5M9E+jjoRZ+Rqiqo53nh+3sYvGciGpoiutysV57nncTXr4XZzQuunCMmrmCuCwB1p6qCNpvN4NcvJaJzSUSbzeZJfP1SjBoY6QQAgFpTVUH/KMdJfP0C6F3CCEABAKDWIMM2AAAAcAxQUAAAAOAYoKAAAADAMUBBAQAAgGOAggIAAADHUFVBHx8fHx8fwzAS/9lsNifxEgAAAKgbJ1DQJI6/f//+55//ud0m6T9JEn///v35+fnu7i6chydxFAAAAKgVVRX04eEhjjc///nX6+vbdpuk/+x225///Ovp6SmKoul0GgTBSXwFAAAA6kNVBb2/v99kOViSJN5u91m1d7vtZDLxfd/3/clkchJfAQAAgPpQVUGn0+k+B8tmk6RZtTUR/fv19eePH5KCulNbA3CFGOmW9DXMLau+Z6thk+VvhdwSmYlaP9tcWlvK9FXGE7YzWT6e7C+0zto6KzOa3ixbVJzlkpH3tNS0zyPHl6EHn4rl90ETmX3rzKT86heiqoJOJpN//MdP95/v+8yuioI6bCHM4FNIf8md4iTXeVYRXUhJYjJy08hztYxnah9bJeU9kXfmjqrPrHWX+TmhIpcfIHXaJocOmYSC1gL7adAz1qt9SPqdy12QVRXU9/3VMlqvlut1mlU7i0STPBKFgoKvwczULekOoDKWWZJjv41bnTHLq23Lf1Yuw3ZRkhdbDinbbYjI1OWzm1kzqjJXoKBXiuOa3Z8gUyj1s3bRM1hVQYfDYWEMOhwOmZ2YJlNbTD0r1NJkKkO1t5cnyB41bm5vsSo7+FT0G3jeISqqoaFCyi7dbCqUIKCZgVxJOU8sbudl/Dnfsn8NFDT9Klo89iivoO5kokglellmnW+djtyJm56gMe+G0MLRC56uqgo6GAyixWIZLcxIdB3vI9F4u00GgwGz0zNOZ3r3ogQxL3zxblmWLz3QTLNYq1zWiEHBJ1KYENjS3UgE0S6MpMZyCip64nZbq5gZSQWfr6CHFH5Iw2ZcQY2bMsLSi5Ilzv6QrzdxcsGnDINWVtB+v18Yg/b7fWaXSZ2ZR3qvhC/eba6DXBTNklFDizmhoOATkbVEH7fRe2uJ+OUl+jZ67zamGR2ooDY9YTtLYS9v3d3WObHExR2x+NgYlMyqQhR6SfRril5fs8631nhGrkTSc3A9vbi9Xm8Rhov5PFrM00h0tVyuV1okGse9Xo/ZQUHB74dVtzqzD8dI5du41RqP6ezR/VgP6QO2hn+OcdAC/1ixRUBZ6+5az4gtLuZzSCoqKGTzkyhU0DcyCZxO0L3YmauqoN1utzAG7Xa7zM7Wi6s6Y3kvrm6CXlxQQyQtUU/ERJfyn7l1Xgw1EXtbrRN67Z4UuM20mEz7LXPU54UcrOYwvXlWGQfVehLBpTHme9ueirQr+mpj0Ha7HQbBPAjySHSxWEYqEl1tNut2u83sxJlENLI0ZxLlJvuN2kwiNYSabcJMInB5yJOz0f8nBHbZLraZtoLm8hcc5UpcnjjdZh8tnZqF8e45MfRvZr6Pan481Uwi9OJeHPXlO2eHZY85+jjoRR97qiqo53mFMajnecc3YHbzAnCdHDEXBdNXAKg7VRW02WwGv36F7+9h8D4PgnkYLuahGYkum83m0fWPGmwqLgAAAFADqiroH+U4sFbtFVEEoAAAAGoJMmwDAAAAxwAFBQAAAI4BCgoAAAAcAxQUAAAAOAYoKAAAAHAMVRX00clmszmJlwAAAEDdOIGCJnGcJPF2mycETZJ4t9s+Pz/f3d2F8/AkjgIAAAC1oqqCPjw8pMvHExHd7bZPT09RFE2n0yAITuIrAAAAUB+qKuj9/f0my8FCRHQymfi+7/v+ZDI5ia8AAABAfaiqoNPpNF0+Pt5skjSrtiaif7++/vzxQ1LQiydR0XLAAHAWzEXNtWXJLau+Z6thk+VvhdwSmYlaP9tcWptVUtITtjNZPp7sL7TO2roEcotG0uws1xlbLB7UFnZaLb8PmsjsW2cmpUy/EFUVdDKZrFdLUUSVjvq+z+yqKKjDVtz04t3e3DQaDSgoOBfpL7lTnOQ6T8WlCylJTEZuGnmulvFM7WOrpLwn8s7cUfWZte4yPw+OFh0yCQWtOfJFazlnesZ6tQ/JqHM5Da2qoL7vr5bRerVcr9Os2pmIJvVRULUJCgrOysy8BUh3AJWxzJIc+23c6oxZXm1b/rNyGbaLkryICuvIWUa09VOym0FBfz/MlHzWMyamU9dP8UVPd1UFHQ6HyygiIhqbIjocDpmdmB9Uk7isUMsPqgzV3nl+0I9R4+b21rkcPRQUnBv9FpB3iIpqaKiQsks3mwolCGhmIFdSzhOL23kZf8637F9bBXWn/ETCz7qhndZZ51unI3fipmdz3GFjCVo4esFzW1VBB4NBtFgso4UpoutMROPtNhkMBsxupOXNzpRNpcnWCl+8W5beTA80U11U6ogYFHwihXf2fAdJ/LTM2hZhJDWWU1DRE7fbWsXMSCqoiYKSkTCuoMZ9FmFpzTAVVOiqzbdJkws+Jxl6VQXt9/vRfK5EdLVarleGiCZJ3O/3mV0mdWYC7b3KvXi3uQ5yUTRLRg0t5oSCgk9E1hJ93EbvrSXil5fo2+iN3phmdKCC2iSU7SyFvbx1d1vn5NgYlEyUQhRaL0gMOuPF2efWeEauRNLNcD29uL1ebxGGi/k8Wsz3Iro0RTSOe70es4OCgt8Pq251Zh+Okcq3cas1HushlDadlPQBW8M/xzhogX+s2CKgrHV3rWekioJCNmvLIQr6Rubu0gm6FzvNVRW02+3Og8AQ0UiJ6Cp9VbTb7TI7Wy+u6ozlvbi6SZle3BEbQIWCgrMi3dnVEzHRpfxnzm79SqqIidjbap3Qa/ekwG2mxWTab5mjPi9Hj4NqnYOgdhDZzOd7sw7bvLNG6Ou9rhi03W6HQWCI6GKxNEW03W4zO3EmEY0szZlEucl+ozaTSA2hZptGUFBwccgtwOgsFAK7bBfbTFtBc0mMaq3E5YnTbfbR0gNaGO+ek5PMJEIvbt0wT6s6U9ZpAPsP31rjN2Mc9KLPSFUV1PO88P09DN4zEQ1NEV1u1ivP845vwOzmBeA6OWLiCua6AFB3qipos9kMfv1SIjqXRLTZbB5d/6jBpuICAAAANaCqgv5RjgNr1V4RRQAKAACgliDDNgAAAHAMUFAAAADgGKCgAAAAwDFAQQEAAIBjgIICAAAAx1BVQR+dbDabk3gJAAAA1I0TKGgSxyqrdpoQNEni3W77/Px8d3cXzsOTOAoAAADUiqoK+vDwkC4fT0R0t9s+PT1FUTSdToMgOImvAAAAQH2oqqD39/ebLAcLEdHJZOL7vu/7k8nkJL4CAAAA9aGqgk6n030Ols0mSbNqayL69+vrzx8/JAV1pCE7Pdky9VgfEJwTI92Svoa5ZdX3bDVssvytkFsiM1HrZ5tLa7NKSnrCdibLx5P9hdZZW+dG9sHYoqWG4yvLg9rCLiTL74MmMvvWmUn51S9EVQWdTCbp8vFcRJWO+r7P7KooqDsJKNv04nnF2UMBqEL6S+4UJ7nOc4fpQkoSk5GbRp6rZZynT7RVUt4TeWfuqPrMWneZnwXBB4VDJqGgNUe+aC3nTM9Yr/Yh6Xcup6FVFdT3/dUyWq+W63WaVTsT0aQ2CppjZO4G4NTMzFuAdAdQGcssybHfxq3OmOXVtuU/K5dhuyjJiy1ZmO02RLT18tnNuA8fUNDrx0zJZz1j+7NpCqV+ii96uqsq6HA4XEYREdHYFNHhcMjsxPyg2iryWaGWH1QZqr3z/KAfo8bN7W3RcvRIEQrOin4LyDtERTU0FEDZpZtNdRAENDOQKynnicXtvIw/51v2/xQF5Y0emh8U2UHrhnZOZ51vnY7ciZuezXGHjSVo4egFz21VBR0MBtFisYwWpoiuMxGNt9tkMBgwu5GWNzuTNZUmWyt88W7Z8KUeaKaiqKTRFYOiDxecmcLMz/kOkvhpmbUtwkhqLKegoidut7WKmZFUcGk1ko6Ej4RxBTXuswhLa4apoEJXbb5NmlzwOZnTqypov9+P5nMloqvVcr0yRDRJ4n6/z+wyOTMTaO+V0Oht5cJnlowaWsxpU8lcnAE4G7KW6OM2em8tEb+8RN9Gb/TGNKMDFdQmoWxnKezlrbvbOhuiDx+lYlAyUQpRaL0gMeiMF2efW+MZuQpIN8P19OL2er1FGC7m82gx34vo0hTROO71eszukgqK4U9wGay61Zl9OEYq38at1nish1DadFLSB2wN/xzjoAX+sWKLgPKhR2etZ8Hmw0dpBYVs1pZDFPSNzN2lE3QvdpqrKmi3250HgSGikRLRVfqqaLfbZXa2XlzVGct7cXWTMr242f8Y/QQXQtIS9URMdCn/mbNbv5IJYiL2tlon9No9KXCbaTGZ9lvmqM+Eq6ky46Ba5yCoHUQ28/nerMM276wR+nqvKwZtt9thEBgiulgsTRFtt9vMTpxJRCNLcyZRbrLfqM0kUr202aaR2l+bqIRXQsFZIbcAo7NQCOyyXWwzbQXNJTGqtRKXJ0632UdLD2hhvHsO7D58lFNQswqEo/XCvJDUmbJOA9h/+NYavxnjoBd9RqqqoJ7nhe/vYfCeiWhoiuhys155nnd8A2Y3LwDXyRETVzDXBYC6U1VBm81m8OuXEtG5JKLNZvPo+kcNhI0AAADqSFUF/aMcB9aq97wiAAUAAFBHkGEbAAAAOAYoKAAAAHAMUFAAAADgGKCgAAAAwDFAQQEAAIBjqKqgj042m81JvAQAAADqxgkUNIljlVU7TQiaJPFut31+fr67uwvn4UkcBQAAAGpFVQV9eHhIl48nIrrbbZ+enqIomk6nQRCcxFcAAACgPlRV0Pv7+02Wg4WI6GQy8X3f9/3JZHISXwEAAID6UFVBp9PpPgfLZpOkWbU1Ef379fXnjx+Sgl4y3XW+whHWNwJnxEi3pK9hbln1PVsNmyx/K+SWyEzU+tnm0tqskpKesJ3J0u1kf6F11taZyR1kTRoZtvep4fjK8qC2sAvJ8vugicy+dWZSfvULUVVBJ5NJunw8F1Glo77vM7sqCuqwFTeNRjR7GgCnJf0ld4qTXOe5w3QhJYnJyE0jz9UyztMn2iop74m8M3dUfWatu8zPw2yWSz1p1CGTUNCaI1+0lnOmZ6xX+5D0O5fT0KoK6vv+ahmtV8v1Os2qnYloUh8F1bdCQcH5mJm3AOkOoDKWWZJjv41bnTHLq23Lf1Yuw3ZRkhdRYR05y4i2XjLDtqNRKOi1Y6bks56x/dk0hVI/xRc93VUVdDgcLqOIiGhsiuhwOGR2Yn5QTd+yQi0/qDJUe+f5QT9GjZvb24Ll6CGg4Lzot4C8v1FUQ0OFlF262VQoQUAzA7mScp5Y3M7L+HO+Zf/PUFChzUPzgyI7aN3QTuqs863TkTtx07M57rCxBC0cveC5raqgg8EgWiyW0cIU0XUmovF2mwwGA2Y30vJmZ7qm0mRrhS/eLUtvpgeaqSoqbZRj0L0cQz7BebEFc/rTcT7iyMRPy6xtEUZSYzkFFT1xu61VzIykgsvdsfYKKDTIR8K4ghr3WYSlNcNUUKGrNt8mTS74nMzpVRW03+9H87kS0dVquV4ZIpokcb/fZ3aZ1Jljk3slfPFucx3komiWjBqaODp7cZFrFJwXWUv0cRu9t5aIX16ib6M3emOa0YEKapNQtrMU9vLW3W2dF+0OqxUVxaBkohSi0HpBYtAZL84+t8YzciWSbobr6cXt9XqLMFzM59FivhfRpSmicdzr9ZjdZygo+nHBebHqVmf24RipfBu3WuOxHkJp00lJH7A1/HOMgxb4x4otAspad9d6ZlirJRUUsllbDlHQNzJ3l07Qvdhprqqg3W53HgSGiEZKRFfpq6LdbpfZ2XpxVWcs78XVTcr04mb/Z1NxL/sKDfiCSFqinoiJLuU/c3brV1JFTMTeVuuEXrsnBW4zLSbTfssc9ZnIpuI69ZKX6P9gTlFtIbKZz/e2PSppV/TVxqDtdjsMAkNEF4ulKaLtdpvZiTOJaGRpziTKTfYbtZlEagg12zQyw1y8DwouALkFGJ2FQmCX7WKbaStoLolRrZW4PHG6zT5aekAL492z4Hqz9dCZROjFrRvmhaTOlHPKWPZMpI+DXvQZqaqCep4Xvr+HwXsmoqEposvNeuV53vEN4CVO8DtwxMQVzHUBoO5UVdBmsxn8+qVEdC6JaLPZPLp+zP4BAABQT6oq6B/lOLBWreMVASgAAIBaggzbAAAAwDFAQQEAAIBjgIICAAAAxwAFBQAAAI4BCgoAAAAcAxQUAAAAOAYoKAAAAHAMUFAAAADgGKCgAAAAwDFAQQEAAIBjgIICAAAAxwAFBQAAAI7hvwGcxKkxDmPKYAAAAABJRU5ErkJggg==" alt="" />
  • SQL SERVER 结果

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAmAAAACrCAIAAABOubfZAAAgAElEQVR4nO19TY8ct5Zl/B7v9LLeInM/3V3/QIsnv81UaKb/gjdjqdflXBkoQAK0MGQPRrNRAamNFtoM/KHcu4CAVkZ3y2V3t2pnwAVwFhFB3i8ySAYjM6LqHgSkrEh+HJL38pCMSLL66+k/f1IoFAqFQoFR/fX0n1/dXRy7ehUKhUKxVHQCae4iVCAVCoVCkY07LpD3B8c2JIVCobhruOMCeezqPRDuT0kVCoXiYBgQyPpiL16rml6HVL5IvHr16r8w3r179+7du9cYL158818LhwqkQqFQFMewQF7sTXddmNpzLUUgLy4oz+vr6/ri4iiqVhAqkAqFQlEcyTNIPndc1fvVyiOQzVfrCqHeZWld89V6/VWTGOnVq1f/iWEF8ubmZv+72f9uXv70qa4v/nPhUIFUKBSK4hgQSDjlev/+vf387t279sMff/xxcbFfreooYcvSORcxMbpPIH/++ef9fv/+/fuXP326uNirQCoUCoWCI0EgrSgaY16/fm2M+eOPP25ubi4u9uv1OiRs7u9dnTeHzBXI/8C4uNhf7PevX7++uNi/ePFNe9X1xX9E4v2/nFRV9ff/jf4++Zf3sfGnggqkQqFQFMeAQL548c3PP//8/v37dxitxrRvuCQIpP3TLb12X9sb668aFMtJY12vXQwU3i+Qv2PwZ5Avf/rUTSX3+4v9/sOHD78H8OPTk5OTk5OnP9o/q6qyfx4PKpAKhUJRHMMCaT/DGeTFxf7m5qZ9kvfixTchgRQeQQIB7D72M8vmq3VV72SBhDNIHD5FIH/55Zfr6+vr6+v93rz86dPLnz7BQq1WdUgjf3x6cvL06ee9JH73+cnnn5+oQCoUCsVdRM4S6x9//PH69Wv7nsuAQLopXq9mVDVb6cPTyQGBxOH9AvkbxsXF/sOHD2gevN+35TQX9cXF/v37961G/ibix6cnJ09//O7zk6c//vbbb999fvL0u6cn7R/tbLJqZ5S/wRvk+z6uK//n3/2GIvA4njQtVCAVCoWiOAYE8uuvv97v962c2Kd37b/2Md7FxUXsEms78fNP+3Z1VUXNIHF4v0BeY/Al1k4gjTHGfPjwYVXXq1W9WtXXIn54slo9+aH99/rbR+5z958Lc/3to+rRt+2f1aNv6Z8sTfhFbJoOKpAKhUJRHMMC6bTkYt++lXNzc/PixTf73027Svn111/HvsXKFdKuqVb24eT6qwa8y7OrKy6QNHyaQLZz3+vr6/3vvUBe1KaujTH1xeriYr+qgwJ5/cOT1aNvW7WykonmxO4WkDj4p70BgtvvYtNUgVQoFIoJkSCQ7bKqfe5on+GlCKSVxl0deEkHvcSzBtLYxkLLtOGXdH7FsALZquP+d7SGfHNz8+HDh4v9frWqfxXRSlf7/2r16GV/54cnq+rRSynGy0dVBb7q/3z5qFo9+QGk2aeM7sSl+euvv6pAKhQKRXEMC6R9ZxUuq7Yvr37dwyuQR8WrV68+YrRyaNVxv+8Fsq5Nvfrll1/qi1UrkB9FfP/lavXl9+2H6tFLd8f+3X/1/ZerygZdffkS//n9y0d98I8vH1U8hZg0v3e8VCAVCoWiOIYFcr1er1Y1+Rd+aHEw2YvHgEDuTb1f2dd0r6+vf/7553fv3rXvsg4IpHDn5aN+LbT9+/svV/Bv35/yrbg0VSAVCoViOtzx0zz+HaN9T7XdLqC9OoGsV6ZevX//flWvWoH89yPim79Vf/smKYYKpEKhUBTHHRfIf8NoX8D5+9//vqrr9moFstsooF9DXq3qfzs0vvkbmFH+r/+XFlkFUqFQKIrjfgkkRyuH/MpTuWNBBVKhUCiK444L5L/eD6hAKhQKRXHccYFUKBQKhSIPd1kgFQqFQqHIBhXI//N/L/XSSy+99NJLL0Egb6fEx5s/F5Ss4j5jEUalJPMwQ0qK2wO2S2RGKpAKhYxFGJWSzMMMKSluVSBVIBVLwSKMSknmYYaUFLcqkCqQiqVgEUalJPMwQ0qKWxVIgdbV+Xp9fhW+k5Fsi8uzqkpM6+ocnud8Nm19KOaLKFs9NqYiWbSknOTlWUWxXhfLMYK8XG+QTpvA/Fr8buNgThepRHdcIC/PqrOzs7TEUO5X5+vRGqk+tkyoQE4nkD0uz6x7FcwxWyBhrPbP+bX43UZsuxwgo9u7L5BX5+uzy9vLNIWcpj0Ui4MK5L0WyOKsFBHQGaSfFlziKCKQrT7aDK7O1+uzszVYOuV3bnk19T7s6NG46/PL87VjDZePXP5X5+v1+flZhTNTzBexg7mK2Q8x49AdYpnJdpFIss/OOpj9LFA6gkAiB4HVQuhxL7tN60CSZ5CMgGIKJLUL7U5T2ihWiWYjkGAx8/KsiEB2+ohycE8WqrNL4c4t7xpsg7jvUVz4QZwKuwRAQ6qXzR4R2sOsApoxN2x3B+hTZxuZBhFHEmcHPAzQZpQOL5DEQVy1CEVg5UvrQIaeQZ5donoIElCUQ4JA0u40rY1ilWguAgmLVGaJFdl7xbOwPgDvCLlfnvGQZGjJP/B8xxVQcXikPQ7xtbJ4p6qQaV7m20MUSZLdFetTilKKItnBs8Tqnb2RebDfu8vOIEUCigmQ82w4q40ilejuCqSdP9oULyM6L577YMdHP4DhK/ExFchFYUqBxEupI+whTiD5yi32iKKUokh2iBdIUgSPl0WTTxdIfSpyCIwTyIQ2WppAktWq0QIp1OrZGVzr6pdJ8R0aE84r2RKrVyD7dmq9WAVymZhyiRWb3aQCKVt5NwEDIlOMUhTJDnECKRSBeVliB5LYEct1qCiOfIFMbKNYJZqNQII1k/RfRLFk2VOIrj9Yr+H8++p8Te5AGt2zCJwCiit/QAmoQC4Wgz+V68dYfvsRl9xvb8ErJnDBczKSJDsXDOZajFIUSZdpjEAyetzLbtM6kPSOWKpDRWkM23PbuHJ3mtBGkUo0A4E8WLLc51WoFH6MtVXQ+XvvjMYidoSZIckZUlLc6k46KpCKpSDLVuGvD1rb4neOTvLQmCHJGVJS3KpA6l6siqVgEUalJPMwQ0qKWxVIFUjFUrAIo1KSeZghJcXtIgTy482feumll1566XXPL0EgP02Mqqom+lehUCgUilKQBXK6ie2nT5/eNKb4NVGyet3naxFGpSTvDCW93hywXSIzOoJAVlVVvLRTpKnXPb8W0YcqyTtDSa83KpA6g9RrKdcijEpJ3hlKer1RgdQZpF5LuRbRhyrJO0NJrzcLF8gCG4EM0dqdVvWTgqV9u/3swfZ5biU+eVh99kWTEfH5Fxv74/DTZ4UadbAsz+qq2jx+Wy7BQ16zItOYN2GjAltfFWvfKUl2PMWbvsBtOs/q/h4wrUD4JJKNefLwONXoo9TyAWR2p8QsJ299mqOtIoeHu4QEW8IuSvP4QVVl+FrvoX0VleYZbBeUfp+s7WYzeumyAmk3pysgkJU822seP2izyBFIT5rjut2328/iqx5k9PyLDbC/3WkpLxoqy5OH1enDOsFW2gTjq8iGnELMMtKcWFOjRl3H1vW0oSG56WtQ++ez2vnj2+1nViN94VNJPqt7T8kcGZeuN4HG8y82yH+TWj/DuXiOfm5R+b7dfvZgg/6sxgiko1GAZ2y7mOdfbHpdbB4/sKO9NqPdadLEIJgRuXQG6buaxw82pw836QLZPH6Q3FqJWfgI10/4gDc/wYKVOU3icxDIg/fsWSR9N3vy8n1myc/qrpPypZNI8vkXzr88ve1h6022KOxTE7U+SVakkS+Q28cP+6Z8Vn/2sM5xHGE8PZpnZLvgqzMbwOTJw+RJyHwF0jvbG1G5CTNIt0ICh8Y9bOBndfVwB1viMVkLcrE2j9/209/AhIzkK6VJVwykKM9p1iD9hzsnz2+3nz2oTx+Q6PwOJLw7xQtHcM3k9JlUxohCgeKD+Ue1efwWl3egkt2gtY+yc3zket48fmuePOwDvN1+RpcZB8YxCTNIV7f1k0EDA4FPUQ2jNrIFDA/RJpxBuhE6rFtJUAvMIJvHDzIfZ+RdEiVr/3ZeIk2Vklo/5LPQ3RpizNJwAfeNLEGva7QcnnVrS08ebh4/632tX6tsnyX5+x/bpWy4Pw7wLNAu5OpnkG4Al5PjfAUySGjqGaStXDtnd3dA4I6GE8iKhAGDayIzcmfB8hXSBMP5bvzOoohZY0sFnIHndDmyO445qAe+ZCGXMaZQLhH7QLeveVxeuZJJY7EotKqFynnysOsysFON6Nah4Nm+o6uxCAODYwVewyTBMiRBf81vBgLTrGH9S+mkknSDsJTVmhJXygzSoKlSUut7fZa52zM2KfdVvmznftdAzrs7tZ/REmX9ROh/pC6OLx6EeBZqF3ChB1hdW+Ss2M1XIKsjziC9doO+tSs/fC4POjIIYN+DI3dvvg2aMfii8Kx7z3Tg6XOfsXdku4f2x9L0FUGqTFYJ1vHiyhtZRZywq5zdaVW5tUEhQKILeYsWVwraEP4a9plTHkl6UxwaGukZD6xerp2wr08kCa7sF+LyrkSBBFOljNYPdBf+rNnkDPSNghkPeVP7CKZdJAdjx9NnduWcpSByTuJZql1AXhUtl8l7qjVfgQwSmngGmdILW6Alezr44ilLrZWiJU8eVlVgDMizbuz6avtn8/gB9sBwT+0VSDCPJGHyBJITiylvZBXZYGLlVHChNdbAphfIoRqWqzGXJL/pe6boesy4Z5D2fipJZBsHfZE1VSDdVClTIH3dRSBrMjkjAimbsdeb2uH+g02/kr993jfck4eolV0KIucknqXapTFv6MuP9AF26uhqvgJZHfMZZOQSK24Dj4iC52TIIqW3WH1rL9jy3HSwGxJ6lmtw1sw+nn+x+exhbe0brH+yO87i+RIraIv2WRHtCCIKxU0cDVFBebmiy0u4niisfcFKUXX6zE5QhNpLdqFQ7xa3xOoEMlzDEwvkwEs60W+xjnhJp1NWmNFBrnSB7KdKSa3v9dnBJVaQo1DJUv8z4E3iAsDuFI0d5f5HWHCK5VmoXUQLwQ+w785LOkFCE8wg4WSwf05WVRVbyMY3+4b3CGRvW2Qdj71LUvH3TXyDzcBLOjQKz5o9Mqyqyj5Rd9H5ndBLOrAU1YPtc1tG5HIDhWIjX0eVv6QjuTRqF1xFsM5tLrBymscP7JsIu1MUqyrzkg6/M2hgZCwlflVEICsEWsmNQaupnnGk93eQvvBJJOf2O0hULt4X7U596xa+1vf6LHc31IG8ETgQPjRBr2sECcOVbfazQpyFXyCHeHIP9Xby4d+nImOWfhk51gDYpTvpgGtopWhJV9Qajl6hq/ymHhMY2CJ2hJkhyQNRmrvTHflHSvxa9E46ZQRyZtXqxnF5b0PN9FKBHH0VstVpDWyG2rMIkoeg1E6+ZzvmflZXWXvQTHqpQM54BqmXXuCaYbeuJO8wJb3eqEDObwapl17ytQijUpJ3hpJeb5YikB9v/pzo0hmkXku5FtGHKsk7Q0mvN0sRyKlRVVXxfxUKhUKhKIgjLLGaCTBRsor7jEUYlZLMwwwpKcwB2yUyIxVIhULGIoxKSeZhhpQURgVSBVKxFCzCqJRkHmZISWFUIFUgFUvBIoxKSeZhhpQUZrkCeXnW/9Z53GZzAVo7u6dVvStW2ma72Wyb1OQApbzYzdZtIZZeGn+iYTa7ukriO65yCmNWZIwxYaMCu14Va98sJJPE97uv0E3bDLsaFQ786Xw1yuJivP7A1eij1PIBZHY1KeDkrU9zhJWdk2tLmFhAhq/1HtpXUWmexphEUxljPCUF8up83esi+FhUIJvtpi8l+Di+tGO63SRDAhk12w2ItqtLedFQWXZ1VdfUnYcTjK8iG3IKMctIc2JNjTKqY+t6nOVj9+KEoc+5AB6BJBYdMYr0knRxSV6Tw0NJoNFsN+hWUutnOBfP0c8tKt9mu9ls0J9xwxpPmo5GAZ4MCaYyznimWmK9Ol+vz6+KCyRERp8zgUA2282mrqNju4wm6zIHEm7NlQ148xMcHT4JCxXIg/fsBLGWHx7coEGpLZEokDmVHhgWw377kPUoU5ILh31qotYnyYo08gVyu7Up7uqUfo2lWZYnQ4RA8EYqaZMEqQI51QwSl3bKGaRbIQFDZs/yUhe7szAczcVqrQZ8FBuL5CulaYM4qWVRGpo1SL9bLNtsG6vvJDq/AwnTRW64ZlLvpDJGFAoUn06xUXkHKpne2Gx3jo9cz91wtwJU8XLigFMlzCBd3bp68hoYCFyjGkZtZAsYZhlt+X23NXIGmTUoiZgW4GWX6SFRIit2nqlSUuuHfBa6W0OMWRou4OZgCXpdo+XQa9mu3mx3va+BJXPQi/H+x3YpG+6PAzwTMSwQXB9yFGMagbw6X1dj5o8RApnnKNHdhKvL/pO4+tS1sRPIioTBCyJEMwT+LF8hTdCF9SFoFDHr/qMN3HMGdt6lx+445tDK2KqZXMaYQjnYRPtouLxyJZPGYlFoVQuVs6u7LoPqw1BfH/d4r+87SOECBiaaOPkKfsgmSS3fpgxh6xOXyJhhgbQ9fPYSq0sjc1aTjZQZpEFTpaTW9/osc7cdG9BQJrA5eIJ+10DOu6vtZ0ehjcv7H6mL4wOvEM9khAWiIY9TpTtFMrKo/nr6PyMFcrw6Dgpk9jAyeaHJELtB3wpCwGOhXgbYt2+EPpxvg2YMvig8azxA7e6R6Nxn7B3Z7m0wKU1fEaTKZJUAU4kob2QVccIu4K6u2CQ9omtPW5bgrR9ZS4EaFvPKJBk9gwwvsQbKnkESIPuFuDwkCiSYKmW0fqC78Gfd0MkZaA7BjIe8qU0PL5N3KbrpAE5B5JzEMx1ZS4z8TpGMjIkXyCLqGBbIbHUMlTZHIJlpwMEtHXzxlCUnS9GSrjsPORszhoatAe0ichwQSNBlkTB5AsmJxZQ3sopsMLFy0EAi1pWmF8ihGhbzyiMZThBViycoHd/4ayOepIfBAZAqkG6qlCmQvu4ikDWZnBGBlGvL603t/xv0HKZNkmfTL/pKnJN4piPvJZUIG8zJyMQK5OXZ2J93DArkuJc9Sy+x4tgeEQWPxZBFYqVvC8byFX0JPTTwRWFZi51hXdNQPB6yeOgQbceNX+sXuu+IQrHWwENUkBxXdDF9XxTWvqTYvRYJtedDjkDGGBgSyHANlxLIkJGT7+Fn1NXBiSWabuYvsbqsyr3rHYl0gexHoUmt7/VZ5m6CMeNxL11iZf3PgDeBSMgC4dhR7n9QF+fxaw/PZMT/zCHBk1MyIqj++k/DAul+BFlVVTVqJhn++VHUyldSaRs8G+yfk6E8YJhYgYSU7WCsEl4ukV4vkQebLIg/Cs+a8a6qyj5Rd9H5ndBLOqjyNtvGlhG53ECh2MgXd9s2thiXNRa+Aesc9d99kAY82LTv68Q+OssSSIEzNTAylhK/KiKQ2PDF+67yxcDwC0jDWYrcs8eSnNvvIFFt844+YpE51mcNczf2C0zKga94owS9rhEkDPsOZrk4C79ADvHkHupt7RhT4TWYqhfhjCCiBLIgZr2TzpHf2C+KsBsrIlDeVicwsEXsCDNDkgeiNHenm12XN7+ddO67QMK566xtOQ0qkKNRyFanNbAZag/HDEkegpI4J5wPolbHDw0VyLkJpEIhYxFGpSTzMENKCjNDgTxRgVQoJCzCqJRkHmZISWGWIpAfb/6c6FKBVCwFizAqJZmHGVJSmKUIpEKhUCgU9xy6xKpQyFiEUSnJPMyQksIsZQapAqlQLMKolGQeZkhJYVQgVSAVS8EijEpJ5mGGlBRGBVIFUrEULMKolGQeZkhJYZYrkHa3uZFbsgZojdl0ypvsuF/HZ58wIGw1Nx6DZXGHHxZK8JCYFRljTMYubsdAJMmKnoWJyfvuG7yrXBNMPIPk3LaaE37cz45zmrz1aY5kG87kXBtyIlSz3WRtENB7aF9FpXkaY+JMhR9qMuFWc1ECeXnWb8B6eTZOIr20nBbl7H40iUAmGRLZYBPt6FjIi4bKsqurupaO+A4nGF9F0RuE5iAjzYk1Ncqojq3raZZPbvoa1P4JjReatS98KslxXj8GHkoCjYYc55TU+hnOxXP0c4vKt92Emey4mi+QnnOk83gy+ExF2Jrc3cqZyEy0xHp1vh516lUErZwuZwKBbNojMdIFcrIucyDh1lz5+aXZCY4On4SFCuSxd7McJZDeQyLxsYEsuDedRJKkG5/rcVfYpyZqfZLswIbgKak1281mu7Up7urMw6mF8fRongwxutWwMyQyspxGIK/O1xPNIGHpJ51BuhUSNlGv8EbxduP+zsJ8q1L9qREVPauBlQskIKVJVwykKA3NGqQPD+Pp9J1E53dCp3nANZP2QB1axohCgeLTKTYq70Al8zNRdo6PXM/dcBceKY2XGQc6iYQZpKtbV09eAwOBa1TDqI1sAcMsJ5xBck+0d8rPIPGyy/SQKJHlXs9UKan1Qz4L3a0hxiwNF7AKsAS9rtFy6LVsV3cHsGzB6oA9bE1O0Z3mseH+OMAzEXEzKFK5RRcdMaqTf/ofkQJ5db6upnwGafhq+fjSUtd1Ts8n6iCwO2PbduQ4DF4Q2UgHFbGS0YPiaJpgOI/PO3M3xKz7j2hwDzockB67swmcB8mqkZYxplAONtE+Gi6vXMmksVgUWtVC5fSn7bGuPbtbh4LnTpnEhQsYmKgF5Cv4oQBJ0F/zm4HANGtY/1I6qSSdSmTOarKRMoM0aKqU1Ppen2XuRk8N45Mzch4kSdDvGsh5d7X97Ci0cXn/I3VxtIrCPJMxqFvIe5qYMWRmRi0SBNKq5BiNTBkglChtYKjL27v/LAgBj4U6CGDfoo9F5Ytb2xeFZ40HqN09Ep37TIVPQPXRFtP0FUGqTFYJMJWI8kZWESfsAnZnpPsDyEhbluCtH1lLgRoW88omSW8y5Sb3uSPaO750UkkCZL8Ql4dEgXQD0JzWD3QX/qwbOjkj56oSMx7ypjY9vHbepeimAzgFkXMSz3QMz6CEHmbISdIzskgVyLEPIROWmIuUNkcgmWnAwS0dfPGUJfopWtJ15yFnY/bXsDUgfqR4IEFZIEGXRcLkCSQnFlPeyCqywcTKQQOJWO+dXiCHaljMK5skv+l7pogXUExs+HSSiNlBn+WmCqSbKmUKpK+7CGRNJmdEIOXa8npT+/8GPYdpk+TZ9Iu+EucknukImApSR3EMUCgjiCiBBNPGqWaQeDQ72QwSJC6Mk6XBEZrzoFuYLwiDG7J9EZDlK/oSemjgiyJUlTAMqGsaisdDFg+rve24gaHbZxSoI4goFGsNPEQFyXFFF9P3RWHtS4rda1GCoeUIZIyBIYEM1/DEAjnwkk70W6wjXtJxi3wH1ccMgexHoUmt7/VZ5m6CMeNxL11iZf3PgDeBSMgC4dhR7n9QF+fxaw/PZIQeV5Nk8QPsYpKBETuDtL+DHPUOa9zvIFPHAqHSNng22D8nQ9nAMLECyfmiH1DBJOkt32CTBfFH4Vkz3lVV2SfqLjq/E3pJB1XeZtvYMiKXGygUG/k6qii2GJc1Fr4B69zmAiunAQ827fs6sYaWJZACZ2pgZCwlflVEICsEWsl9IKnTBz2O73eQvvBJJOf2O0hULt7Rwzf3PLFifdYwdxOPV4YcCB+aoNc1goRh38EsF2fhF8ghntxDva0d/n0qMmbpl5HxmGqJdSRmvZPOkd/YL4qwGysiUN5WJzCwRewIM0OSB6I0d6ebXZc3w5107rlAwqHJrG05DSqQo1HIVqc1sBlqD8cMSR6CkjgnnA/A8up8oAI5N4FUKGQswqiUZB5mSElhVCBVIBVLwSKMSknmYYaUFGYpAvnx5s+JLhVIxVKwCKNSknmYISWFmaNA/qMgkAqFQqFQ3HPIAqlLrArFIoxKSeZhhpQUZikzSBVIhWIRRqUk8zBDSgqjAqkCqVgKFmFUSjIPM6SkMCqQKpCKpWARRqUk8zBDSgqzdIG8PJtwq7kWeZv6e5Md9+v47BMGhK3mxmOwLO7ww0IJHhKzImOMid7F7bg/BE8mybagAwc58L3QxD3Dkjc/CHj9vLaaE37cz45zmrz1aY5kl7XkXFvCxAIyfK330L6KSvM0xiSayhjjmUAgr87XU+7Fakx+200ikElkyAabaEfHQl40VJZdXdW1dMR3OMH4KoreIDQHGWlOrKlRRnVsXY+zfLZhOg8M98vlm+jCP4lFR4wivSRd3EPveeahJNBoyHFOSa2f4Vw8Rz+3qHzbTZjJjqv5Auk5RzqPJ0OCqYwznuICeXW+Xp+djTrrakggm/YUinkIZCIZl9FkXeZAwq258vNLsxMcHT4JCxXIY+9mGWv54cEN2mzct6k0PkuwBEnSjc/1uCvsUxO1Pkl2YEPwlNSa7Waz3doUd3VmJyuMp0fzZIjQrTK7aJYWyMuz6uxy5GGQAwLp2St/VGnFyiTzcnLYAifTWRiO5mL1p0ZU9KwGygQmIKVJd9OXojQ0a5A+PJeh03cSnd8JneYB10zaA3VoGSMKBYpPp9iovAOVzM9E2Tk+cj13w114pDReThwwtIQZpKtbV09eAwOBa1TDqI1sAcMsoy3fd7KVZRg3g8zyz4hpAV52mR4SJbJi55kqJbV+yGehuzXEmKXhAm4OlqDXNVoOvZbt6u4wrC1YCLCHrckputM8NtwfB3gmYli30GDOc6dIRsaYaIG8PKvOLkeflhwUSN8hreNKS5Nzddl/ElefMBnbtxp4C9jyRjqoiPJgB8XRNEEXhk+MczfErPuPNnDPGdh5vZPvbALnQbJqpGWMKZSDTbSPhssrVzJpLBaFVrVQOf1pe0wfhkwt7vFe33ewE5m9BiZqAfkKfsgmSS3fpgxh6xOXyJhhgYw+oC7iwVLmrCYbKTNIg6ZKSa3v9VnmbvQ8SD45I+dBkgT9roGcd1dv+DHObVze/0hdHB94hXgmI6xbDXmcKt0pkpFFdfKPj3scZxAAABVkSURBVGMOTG51cTqBHNCX7NKS5Lx2g74VhIDHQr0MsG/fCH043wbNGHxReNZ4gNrdI9G5z1T4BFQfbTFNXxGkymSVAFOJKG9kFXHCLuCurtgkPaJrT1uW4K0fWUuBGhbzyiQZPYMML7EGyp5BEiD7hbg8JAokmCpltH6gu/Bn3dDJGTlXlZjxkDe16eFl8i5FNx3AKYick3imI26JtcAUsqBAXp2vUVWN0UgPrZR+K6m0OQLJyMDBLR188ZQlJ0vRkq47DzkbM4aGrQHxI8UDCcoCCbosEiZPIDmxmPJGVpENJlYOGkjEutL0AjlUw2JeeSTDCaJq8QSl4xt/bcST9DA4AFIF0k2VMgXS110EsiaTMyKQcm15van9f4Oew7RJ8mz6RV+JcxLPdMToVtYgLScjY0y1iphBQqmc+mceGUUNlZYm55q9/wQMwef7HhEFj8WQRTbCW6wsX9GX0EMDXxSWtdgZ1jUNxeMhi4cO0Xbc+LV+ofuOKBRrDTxEBclxRRfT90Vh7UuK3WuRUHs+5AhkjIEhgQzXcCmBDBk5+R5+Rl0dnFii6Wb+EqvLqty73pFIF8h+FJrU+l6fZe4mGDMe99IlVtb/DHgTiIQsEI4d5f4HdXEev/bwTMawqfj7syIZEdwDgYSTwf45GZqlwjCxAmnYExj0AyqYJL3lG2yyIP4oPGvGu6oq+0TdRed3Qi/poMrbbBtbRuRyA4ViI1/cbdvYYlzWWPgGrHPUf/dBGvBg076vE/voLEsgBc7UwMhYSvyqiEBiwxfvu8oXA8MvIA1nKXLPHktybr+DRLXNO/qIReZYnzXM3cTjlSEHvuKNEvS6RpAw7DuY5eIs/AI5xJN7qLe1Y0yF12BJycBIE8jxmPVOOkd+Y78owm6siEB5W53AwBaxI8wMSR6I0tydbnZd3ux20rn3Agl/yzBrW06DCuRoFLLVaQ1shtrDMUOSh6Akzgnng6jV8UNDBXJuAqlQyFiEUSnJPMyQksKoQKpAKpaCRRiVkszDDCkpzFIE8uPNnxNdKpCKpWARRqUk8zBDSgqzFIFUKBQKheKeQ5dYFQoZizAqJZmHGVJSmKXMIFUgFYpFGJWSzMMMKSmMCqQKpGIpWIRRKck8zJCSwqhAqkAqloJFGJWSzMMMKSnMHAXyH2IE8vLM/dh51GZzflqjfk/tTXbcr+OzTxgQtpobj8GyuMMPCyV4SMyKjDEmYxe3YyCSZEXPwsTkffcN3lWuCSaeQXJuW80JP+5nxzlN3vo0R9gz5uTakBOhmu0ma4OA3kP7KirN0xgTZyr8UJMpt5qLFcizy3xZjBTICfaAH9PtJhkS2WAT7ehYyIuGyrKrq7qWjvgOJxhfRdEbhOYgI82JNTXKqI6t62mWT276GtT+CY0XmrUvfCpJNwI99J5nHkoCjYYc55TU+hnOxXP0c4vKt92Emey4mi+QnnOk83gy+ExF2Jrc3cqZyBQVyPGblA8K5LiOZoJkm/ZIjHSBnKzLHEi4NVd+fml2gqPDJ2GhAnns3SxHCaT3kEh8bCAL7k0nkSTpxud63BX2qYlanyQ7sCF4SmrNdrPZbm2KuzrzcGphPD2aJ0OMbjXsDImMLEsLZD+7neo0D8+xAWNLK25J6puoV3ijeLtxf2dhvlWp/tSIip7V4Cmg65JImnTFQIrS0KxB+vAwnk7fSXR+J3SaB1wzaQ/UoWWMKBQoPp1io/IOVDI/E2Xn+Mj13A134ZHSeJlxwNASZpCubl09eQ0MBK5RDaM2sgUMs5xwBgkG7e6+KKgFZpB42WV6SJTIcq9nqpTU+iGfhe7WEGOWhgtYBViCXtdoOfRatqu7A1i2YHXAHrYmp+hO89hwfxzgmYgI3eJWmJNjvEDWwwJ5edYL49X5etRia6SrFBsOUNd1ifOJOgjszti2HTkOgxdENtJBRZQHOyiOpgmG8/i8M3dDzLr/iAb3oMMB6bE7m8B5kKwaaRljCuVgE+2j4fLKlUwai0WhVS1UTn/aHuvas7t1KHjulElcuICBiVpAvoIfCpAE/TW/GQhMs4b1L6WTStKpROasJhspM0iDpkpJre/1WeZu9NQwPjkj50GSBP2ugZx3V9vPjkIbl/c/UhdHqyjMMxmDuoW8p4kZQ2Zm1CJOIAFGrrYmzKCLlDYw1OXt3X8WhIDHQh0EsG+RfVS+uLV9UXjWeIDa3SPRuc9U+ARUH20xTV8RpMpklQBTiShvZBVxwi5gd0a6P4CMtGUJ3vqRtRSoYTGvbJL0JlNuch/24SSGL51UkgDZL8TlIVEg3QA0p/UD3YU/64ZOzsi5qsSMh7ypTQ+vnXcpuukATkHknMQzHWFToero7QjGZmShAunthZ1pwMEtHXzxlCX6KVrSdechZ2P217A1IH6keCBBWSBBl0XC5AkkJxZT3sgqssHEykEDiVjvnV4gh2pYzCubJL/pe6aIF1BMbPh0kojZQZ/lpgqkmyplCqSvuwhkTSZnRCDl2vJ6U/v/Bj2HaZPk2fSLvhLnJJ7pCJgKUkdxDFAoI4gogQTrqm6xtaxAguYo+koSrTmXjzBOlgZHaM6DbuGXqkAY3JDti4AsX9GX0EMDXxSWtTgMqGsaisdDFg8dom0CYOj2GQXqCCIKxVoDD1FBclzRxfR9UVj7kmL3ViXUng85AhljYEggwzU8sUAOvKQT/RbriJd03CLfQfUxQyD7UWhS63t9lrmbYMx43EuXWFn/M+BNIBKyQDh2lPsf1MV5/NrDMxmhZ3Ak2YmeymHEziDtDyGnekkHPLNOlsf4JzH9czKUDQwTK5CcL/oBFUyS3vINNlkQfxSeNeNdVZV9ou6i8zuhl3RQ5W22jS0jcrmBQrGRr6OKYotxWWPhG7DObS6wchrwYNO+rxNraFkCKXCmBkbGUuJXRQSyQqCV3AeSOn3Q4/h+B+kLn0Rybr+DROXiHT18c88TK9ZnDXM38XhlyIHwoQl6XSNIGPYdzHJxFn6BHOLJPdTb2uHfpyJjln4ZGY+pllhHYtY76Rz5jf2iCLuxIgLlbXUCA1vEjjAzJHkgSnN3utl1eTPcSeeeCyQcmszaltOgAjkahWx1WgObofZwzJDkISiJc8L5ACyvzgcqkHMTSIVCxiKMSknmYYaUFEYFUgVSsRQswqiUZB5mSElhliKQH2/+nOhSgVQsBYswKiWZhxlSUpilCKRCoVAoFPccusSqUMhYhFEpyTzMkJLCLGUGqQKpUCzCqJRkHmZISWFUIFUgFUvBIoxKSeZhhpQURgVSBVKxFCzCqJRkHmZISWEWLJB2r7kxh12FBXLErlPeZMf9Oj77hAFhq7nxGCyLO/ywUIKHxKzIGGOid3E77g/Bk0myLejAQQ58LzRxz7DkzQ8CXj+vreaEH/ez45wmb32aI9llLTnXljCxgAxf6z20r6LSPI0xiaYyxnjKCuTlWa+MI3cr99Nym9FmyNIkAplkSGSDTbSjYyEvGirLrq7qWjriO5xgfBVFbxCag4w0J9bUKKM6tq7HWT7bMJ0Hhvvl8k104Z/EoiPc1UvSxT30nmceSgKNhhznlNT6Gc7Fc/Rzi8q33YSZ7LiaL5Cec6TzeDIkmMo444kVyL+kHZg8FhHlz8EEAtm0R2KkC+RkXeZAwq258vNLsxMcHT4JCxXIY+9mGWv54cEN2mzct6k0PkuwBEnSjc/1uCvsUxO1Pkl2YEPwlNSa7Waz3doUd3Xm4dTCeHo0T4YI3Sqzi2ZJgQTHXU0lkAPHAWSXVqxMMi8nhy20N+HG/Z2F4WguVn9qREXPamAlBAlIadLd9KUoDc0apA/PZej0nUTnd0KnecA1k/ZAHVrGiEKB4tMpNirvQCXzM1F2jo9cz91wFx4pjZcTB5wqYQbp6tbVk9fAQOAa1TBqI1vAMMtoy/edbGUZxs0gswYlEcNivOwyPSRKZMXOM1VKav2Qz0J3a4gxS8MF3BwsQa9rtBx6LdvV3WFYW7AQYA9bk1N0p3lsuD8O8EzEsG5xqcgSj8ICuT47W7c1M80zSN57lykt9WdXl/0ncfUJnxhr+1YDbwFb3kgHFVEe7KA4mibowvCJce6GmHX/0QbuOQM7r3fynU3gPEhWjbSMMYVysIn20XB55UomjcWi0KoWKqc/bY/pw1BfH/d4r+872InMXgMTtYB8BT9kk6SWb1OGsPWJS2TMsEBGH1AX8WApc1aTjZQZpEFTpaTW9/osczd6HiSfnJHzIEmCftdAzrurN/wY5zYu73+kLo4PvEI8kxHWrYY8TpXuFMnIovrLP5xFzSC7Jdaxk8nQDBL33mVKS5rTazfoW0EIeCzUywD79o3Qh/Nt0IzBF4VnjQeo3T0SnftMhU9A9dEW0/QVQapMVgkwlYjyRlYRJ+wC7uqKTdIjuva0ZQne+pG1FKhhMa9MktEzyPASa6DsGSQBxj1jSUaiQIKpUkbrB7oLf9YNnZyRc1WJGQ95U5seXibvUnTTAZyCyDmJZzrillgLTCFLCuTt5Zl9BHl1vp7kJR08REt1laICyUwDDm7p4IunLNFP0ZKuOw85GzOGhq0B8SPFAwnKAgm6LBImTyA5sZjyRlaRDSZWDhpIxLrS9AI5VMNiXnkkwwmiavEEpeMbf23Ek/QwOABSBdL1UJkC6esuAlmTyRkRSLm2vN7U/r9Bz2HaJHk2/aKvxDmJZzpidCtrkJaTkTGm+st/ixDI28uzbt441QwSVGvR4QCtOZd4/wlk5/N9j4iCx2LIIhvhLVaWr+hL6KGBLwrLWuwM65qG4vGQxcNqbztu/Fq/0H1HFIq1Bh6iguS4oovp+6Kw9iXF7rVIqD0fcgQyxsCQQIZruJRAhoycfA8/o64OTizRdDN/idVlVe5d70ikC2Q/Ck1qfa/PMncTjBmPe+kSK+t/BrwJREIWCMeOcv+DujiPX3t4JiPiJRVvf1YkI4JIgVzy7yDhZLB/ToZW12CYWIGEdO1grBJeLpFeL5EHmyyIPwrPmvGuqso+UXfR+Z3QSzqo8jbbxpYRudxAodjIF3fbNrYYlzUWvgHrHPXffZAGPNi07+vEPjrLEkiBMzUwMpYSvyoikNjwxfuu8sXA8AtIw1mK3LPHkpzb7yBRbfOOPmKROdZnDXM39gtMyoGveKMEva4RJAz7Dma5OAu/QA7x5B7qbe0YU+E1mDp9DGcEES2QhTDrnXSO/MZ+UYTdWBGB8rY6gYEtYkeYGZI8EKW5O93surzZ7aRz7wUS/pZh1racBhXI0Shkq9Ma2Ay1h2OGJA9BSZwTzgdRq+OHhgrk3ARSoZCxCKNSknmYISWFUYFUgVQsBYswKiWZhxlSUpilCOTHmz8nulQgFUvBIoxKSeZhhpQUZikCqVAoFArFPYcusSoUMhZhVEoyDzOkpDBLmUGqQCoUizAqJZmHGVJSGBVIFUjFUrAIo1KSeZghJYVRgVSBVCwFizAqJZmHGVJSmIUK5NX5Gu9Olb/dnI8W2wAr7ee13tKO+3V89gkDwlZz4zFYFnf4YaEED4lZkTHGZOzidgxEkqzoWZiYfMD94K5yTTDxDJJz22pO+HE/O85p8tanOcKdJnJybciJUM12k7VBQO+hfRWV5mmMiTMVfqjJnLaauzpfj9iONYpWk3y4+CQCmWRIZINNtKNjIS8aKsuurupaOuI7nGB8FUVvEJqDjDQn1tQoozq2rqdZPrnpa1D7JzReaNa+8Kkk3Qj00HueeSgJNGhvlNT6Gc7l7f9SqoiS3NDdYvMF0nOOdB5PhtAMih/R4DZ3TS7PVAIJTr6aSiD5EZz5pc3vv5r2SIx0gZysyxxIuDXXlMpLZTqpGCxUII+9m+UogfQeEomPDWTBvekkkiTd+FyPu8I+NVHrk2QHNgRPSa3ZbjbbrU1xV2ceTi2Mp0fzZIgRiIadIZGR5TQCOfI0yBiBzOr1EroJt0LCJuoV3ijebtzfWZhvVao/NaKiZzVQJjABKU26YiBFaWjWIH14GE+n7yQ6vxM6zQOumbQH6tAyRhQKFJ9OsVF5ByqZn4myc3zkeu6Gu/BIabzMOGBnCTNIV7eunrwGBgLXqIZRG9kChllOOIMEg3Z3XxTUAjNIvOwyPSRKZLnXM1VKav2Qz0J3a4gxS8MFrAIsQa9rtBx6LdvV3QEsW7A6YA9bk1N0p3lsuD8O8ExEhG5xK8zJMV4g/3u8QI5bXo0SyLyBZHQ34ZyeT9RBYHfGtu3IcRi8ILKRDiqiPNhBcTRNMJzH5525G2LWuN4AZ2Dn9U6+swmcB8mqkZYxplAONtE+Gi6vXMmksVgUWtVC5fSn7bGuPbtbh4LnTpnEhQsYmKgF5Cv4oQBJ0F/zm4HANGtY/1I6qSSdSmTOarKRMoM09Dz3+Nb3+ixzN3pqGJ+ckfMgSYJ+10DOu6vtZ0ehjcv7H6mLo1UU5pmMGIFgB3TlGM4UAmmPTZ5OIDMrN1YgvXaDvhWEgMdCHQSwb9HHovLFre2LwrPGA9TuHonOfabCJ6D6aItp+oogVSarBJhKRHkjq4gTdgG7M9L9AWSkLUvw1o+spUANi3llk6Q3mXKT+7APJzF86aSSBMh+IS4PiQIJBu4ZrR/oLvxZN3SqQM5VJWY85E1tenjtvEvRTQdwCiLnJJ7pCJsKVUdvRzA2I4sEgRy9vDoskDkFDZc2RyCZacDBLR188ZSlQqRoSdedh5yN2V/D1oD4keKBBGWBBF0WCZMnkJxYTHkjq8gGEysHDSRivXd6gRyqYTGvbJL8pu+ZIl5AMbHh00kiZgd9lpsqkG6qlCmQvu4ikDWZnBGBlGvL603t/xv0HKZNkmfTL/pKnJN4piNgKkgdxTFAoYwg4gWyiD6GBTJbH4svseLYHhFFL1WBMLgh2xcBWb6iL6GHBr4oLGtxGFDXNBSPhyweOkTbcQNDt88oUEcQUSjWGniICpLjii6m74vC2pcUu9ciofZ8yBHIGANDAhmu4YkFcuAlnei3WEe8pOMW+Q6qjxkC2Y9Ck1rf67PM3QRjxuNeusTK+p8BbwKRkAXCsaPc/6AuzuPXHp7JCD2uJsniB9ipWZYWyALLq0MCOaJiY5/E9M/J0OoaDBMrkAY8Y7eDsUp4uUR6vUQebLIg/ig8a8a7qir7RN1F53dCL+mgyttsG1tG5HIDhWIjX0cVxRbjssbCN2Cd21xg5TTgwaZ9X4fUnhdZAilwpgZGxlLiV0UEskKgldwHkjp90OP4fgfpC59Ecm6/g0Tl4v0RfHPPEyvWZw1zN/F4ZciB8KEJel0jSBj2HcxycRZ+gRziyT3U29rh36ciY5Z+GRmPSIH8/1Kq1RPoQnkrAAAAAElFTkSuQmCC" alt="" />

上一篇:Linux学习笔记15——GDB 命令详细解释【转】


下一篇:python 执行shell命令