Task01-目标检测基础和VOC数据集
目标检测基本概念
什么是目标检测
目标检测是计算机视觉中的一个重要任务,近年来传统目标检测方法已经难以满足人们对目标检测效果的要求,随着深度学习在计算机视觉任务上取得的巨大进展,目前基于深度学习的目标检测算法已经成为主流。相比较于基于深度学习的图像分类任务,目标检测任务更具难度。
**图像分类:**只需要判断输入的图像中是否包含感兴趣物体。
**目标检测:**需要在识别出图片中目标类别的基础上,还要精确定位到目标的具体位置,并用外接矩形框标出。
目标检测的思路
先确立众多候选框,再对候选框进行分类和微调。
一个通过遍历各个区域,然后逐个分类去完成目标检测任务的过程示例。在待识别图上预设一个框,然后逐像素遍历,就能得到大量候选框(这里仅为示意图,图上只展示了3个框用于说明问题,具体数量由图像大小和预设框大小决定),每个框送入到分类网络分类都有一个得分(代表当前框中有一个船的置信度),那么得分最高的就代表识别的最准确的框,其位置就是最终要检测的目标的位置。
以上就是最初的基于深度学习的目标检测问题解决思路,RCNN,YOLO,SSD等众多经典网络模型都是沿着这个思路优化发展的。
目标框定义方式
任何图像任务的训练数据都要包括两项,图片和真实标签信息,通常叫做GT。
图像分类中,标签信息是类别。目标检测的标签信息除了类别label以外,需要同时包含目标的位置信息,也就是目标的外接矩形框bounding box。
用来表达bbox的格式通常有两种,(x1, y1, x2, y2) 和 (c_x, c_y, w, h) 。
def xy_to_cxcy(xy):
"""
Convert bounding boxes from boundary coordinates (x_min, y_min, x_max, y_max) to center-size coordinates (c_x, c_y, w, h).
:param xy: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
:return: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
"""
return torch.cat([(xy[:, 2:] + xy[:, :2]) / 2, # c_x, c_y
xy[:, 2:] - xy[:, :2]], 1) # w, h
def cxcy_to_xy(cxcy):
"""
Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max).
:param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
:return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
"""
return torch.cat([cxcy[:, :2] - (cxcy[:, 2:] / 2), # x_min, y_min
cxcy[:, :2] + (cxcy[:, 2:] / 2)], 1) # x_max, y_max
交并比(IoU)
在目标检测任务中,关于IOU的计算贯穿整个模型的训练测试和评价过程,是非常非常重要的一个概念,其目的是用来衡量两个目标框的重叠程度。
IoU的全称是交并比(Intersection over Union),表示两个目标框的交集占其并集的比例。图3-4为IOU计算示意图:
图中可以看到,分子中黄色区域为红bbox和绿bbox的交集,分母中黄+红+绿区域为红bbox和绿bbox的并集,两者之比即为iou。
1.首先获取两个框的坐标,红框坐标: 左上(red_x1, red_y1), 右下(red_x2, red_y2),绿框坐标: 左上(green_x1, green_y1),右下(green_x2, green_y2)
2.计算两个框左上点的坐标最大值:(max(red_x1, green_x1), max(red_y1, green_y1)), 和右下点坐标最小值:(min(red_x2, green_x2), min(red_y2, green_y2))
3.利用2算出的信息计算黄框面积:yellow_area
4.计算红绿框的面积:red_area 和 green_area
5.iou = yellow_area / (red_area + green_area - yellow_area)
def find_intersection(set_1, set_2):
"""
Find the intersection of every box combination between two sets of boxes that are in boundary coordinates.
:param set_1: set 1, a tensor of dimensions (n1, 4)
:param set_2: set 2, a tensor of dimensions (n2, 4)
:return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
"""
# PyTorch auto-broadcasts singleton dimensions
lower_bounds = torch.max(set_1[:, :2].unsqueeze(1), set_2[:, :2].unsqueeze(0)) # (n1, n2, 2)
upper_bounds = torch.min(set_1[:, 2:].unsqueeze(1), set_2[:, 2:].unsqueeze(0)) # (n1, n2, 2)
intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0) # (n1, n2, 2)
return intersection_dims[:, :, 0] * intersection_dims[:, :, 1] # (n1, n2)
def find_jaccard_overlap(set_1, set_2):
"""
Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates.
:param set_1: set 1, a tensor of dimensions (n1, 4)
:param set_2: set 2, a tensor of dimensions (n2, 4)
:return: Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
"""
# Find intersections
intersection = find_intersection(set_1, set_2) # (n1, n2)
# Find areas of each box in both sets
areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1]) # (n1)
areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1]) # (n2)
# Find the union
# PyTorch auto-broadcasts singleton dimensions
union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection # (n1, n2)
return intersection / union # (n1, n2)
目标检测数据集VOC
VOC数据集简介
VOC数据集是目标检测领域最常用的标准数据集之一,几乎所有检测方向的论文,如faster_rcnn、yolo、SSD等都会给出其在VOC数据集上训练并评测的效果。因此我们我们的教程也基于VOC来开展实验,具体地,我们使用VOC2007和VOC2012这两个最流行的版本作为训练和测试的数据。
数据集类别
数据集量级
其中,Images表示图片数量,Objects表示目标数量
数据集说明
1.JPEGImages
这个文件夹中存放所有的图片,包括训练验证测试用到的所有图片。
2.ImageSets
这个文件夹中包含三个子文件夹,Layout、Main、Segmentation
- Layout文件夹中存放的是train,valid,test和train+valid数据集的文件
- Segmentation文件夹中存放的是分割所用train,valid,test和train+valid数据集的文件名
- Main文件夹中存放的是各个类别所在图片的文件名,比如cow_val,表示valid数据集中,包含有cow类别目标的图片名称。
3.Annotations
Annotation文件夹中存放着每张图片相关的标注信息,以xml格式的文件存储,可以通过记事本或者浏览器打开,我们以000001.jpg这张图片为例说明标注文件中各个属性的含义。
猛一看去,内容又多又复杂,其实仔细研究一下,只有红框区域内的内容是我们真正需要关注的。 - filename:图片名称
- size:图片宽高
- depth表示图片通道数
- object:表示目标,包含下面两部分内容
首先是目标类别name为dog。pose表示目标姿势为left,truncated表示是否是一个被截断的目标,1表示是,0表示不是,在这个例子中,只露出狗头部分,所以truncated为1。difficult为0表示此目标不是一个难以识别的目标。
然后就是目标的bbox信息,可以看到,这里是以[xmin,ymin,xmax,ymax]格式进行标注的,分别表示dog目标的左上角和右下角坐标。
一张图片中有多少需要识别的目标,其xml文件中就有多少个object。上面的例子中有两个object,分别对应人和狗。