0. 小试牛刀
首先,激活tensorflow环境( source activate tensorflow ),随后在ipython里:
import tensorflow as tf sess = tf.Session()
创建常量格式如下:
tf.constant(value, dtype=None, shape=None, name='Const', verify_shape=False)
例1:
node1 = tf.constant(3.0, dtype=tf.float32) node2 = tf.constant(4.0) print(sess.run([node1, node2]))
输出:
[3.0, 4.0]
例2:
a = tf.constant([2, 2], name="vector") print(sess.run(a))
输出:
[2 2]
拓展:http://web.stanford.edu/class/cs20si/lectures/notes_02.pdf
1. 张量(Tensor)
1.1 基本概念
在TensorFlow里,张量这种数据类型用来表示一切数据,我们可以把它看成n维数组或列表。我们通常用Ranks, Shapes, and Types来描述张量。
(a) Ranks
Ranks用来表示张量的维度。
(b) Shape
Shape也用来表示维度,下表展示了Shape和Rank的联系。
(c) Data types
1.2 常量 (Constants)
0. 小试牛刀里便是创建常量形式的张量,这个比较简单,就参见本文的第0节吧!如果想了解更多,就请点击第0节拓展里的链接。
1.3 变量 (Variables)
变量这个就有点小小复杂了。。。。
Anyway,Let's go!!!
1.3.1 创建
# Create two variables. weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights") biases = tf.Variable(tf.zeros([200]), name="biases")
创建张量时需要指明张量的Shape,当然,TensorFlow存在更改Shape的机制(这个嘛,以后再聊)
仅仅是创建完还不行哦,还需要初始化!
1.3.2 初始化
初始化的命令为: tf.global_variables_initializer()
# Create two variables. weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights") biases = tf.Variable(tf.zeros([200]), name="biases") ... # Add an op to initialize the variables. init_op = tf.global_variables_initializer() # Later, when launching the model with tf.Session() as sess: # Run the init operation. sess.run(init_op) ... # Use the model ...
你有时候会需要用另一个变量的初始化值给当前变量初始化。由于 tf.initialize_all_variables() 是并行地初始化所有变量,所以在有这种需求的情况下需要小心。
用其它变量的值初始化一个新的变量时,可以使用其它变量的 initialized_value() 属性。你可以直接把已初始化的值作为新变量的初始值,或者把它当做 tensor 计算得到一个值赋予新变量。
# Create a variable with a random value. weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights") # Create another variable with the same value as 'weights'. w2 = tf.Variable(weights.initialized_value(), name="w2") # Create another variable with twice the value of 'weights' w_twice = tf.Variable(weights.initialized_value() * 2.0, name="w_twice")
2. 简单数学运算
a = tf.constant([3, 6]) b = tf.constant([2, 2]) tf.add(a, b) # >> [5 8] tf.add_n([a, b, b]) # >> [7 10]. Equivalent to a + b + b tf.mul(a, b) # >> [6 12] because mul is element wise tf.matmul(a, b) # >> ValueError tf.matmul(tf.reshape(a, shape=[1, 2]), tf.reshape(b, shape=[2, 1])) # >> [[18]] tf.div(a, b) # >> [1 3] tf.mod(a, b) # >> [1 0]