设$s[i]$为战斗力前缀和
显然我们可以列出方程
$f[i]=f[j]+a*(s[i]-s[j])^{2}+b*(s[i]-s[j])+c$
$f[i]=f[j]+a*s[i]^{2}+b*s[i]-(2*a*s[i]+b)*s[j]+a*s[j]^{2}+c$
$a*s[j]^{2}+f[j]=(2*a*s[i]+b)*s[j]+f[i]-a*s[i]^{2}-b*s[i]-c$
又变成了喜闻乐见的$y=k*x+b$
$y=a*s[j]^{2}+f[j]$
$k=2*a*s[i]+b$
$x=s[j]$
$b=f[i]-a*s[i]^{2}-b*s[i]-c$
$x,k$都是单调
于是再来个熟悉的单调队列维护上凸包就好辣
使用叉积判断斜率大小会爆long long,请使用正常的斜率判断
#include<iostream>
#include<cstdio>
#include<cstring>
#define rint register int
using namespace std;
typedef long long ll;
typedef double db;
#define N 1000005
ll n,a,b,c,w,s[N],f[N];
int L=,R=,h[N];
inline db X(int i){return s[i];}
inline db Y(int i){return a*s[i]*s[i]+f[i];}
inline ll KK(ll xa,ll ya,ll xb,ll yb){return ya*xb-xa*yb;}//数据过大,叉积爆炸
inline db K(int x,int y){return (Y(x)-Y(y))/(X(x)-X(y));}
int main(){
//freopen("P3628.in","r",stdin);
scanf("%lld%lld%lld%lld",&n,&a,&b,&c);
for(rint i=;i<=n;++i) scanf("%lld",&s[i]),s[i]+=s[i-];
for(rint i=;i<=n;++i){
while(L<R&&K(h[L],h[L+])>=*a*s[i]+b) ++L;
w=s[i]-s[h[L]]; f[i]=f[h[L]]+a*w*w+b*w+c;
while(L<R&&K(h[R],h[R-])<=K(h[R],i)) --R;
h[++R]=i;
}printf("%lld",f[n]);
return ;
}