这是深度学习Keras框架学习的一个示例
import numpy as np
from keras.datasets import imdb
from keras import layers
from keras import models
from keras import optimizers
import matplotlib.pyplot as plt
(train_data, train_labels),(test_data, test_labels) = imdb.load_data(num_words=1000)
# 获取将将单词映射为整数的字典
word_index = imdb.get_word_index()
# One-Host向量化序列
def vectorize_sequences(sequences,dimension = 10000):
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
results[i, sequence] = 1.
return results
if __name__ == '__main__':
# 颠倒字典,以值为键,以键为值
reverse_word_index = dict(
[(value, key) for (key, value) in word_index.items()]
)
# 解码第一条数据
decode_review = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
# 使用Onehost方式向量化训练数据和测试数据
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
# 向量化标签
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')
# 构建网络
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
# 编译模型
model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['accuracy'])
# 验证模型
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
history = model.fit(partial_x_train,
partial_y_train,
epochs=50,
batch_size=512,
validation_data=(x_val, y_val))
history_dict = history.history
loss_values = history_dict['loss']
val_loss_values = history_dict['val_loss']
epochs = range(1, len(loss_values) + 1)
# 绘制训练损失和验证损失
plt.plot(epochs, loss_values, 'bo', label='Training loss')
plt.plot(epochs, val_loss_values, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
实验结果:
此神经网络是书上的一个示例,我故意设置了50此迭代次数,观察随着迭代次数的增加,神经网络在训练集和测试集上的表现。由上图可见,在第10轮迭代附近时,神经网络在测试集上的效果已达最佳,迭代继续,神经网络在训练集上表现越来越好,可在测试集上的表现却越来越差,陷入了过拟合。