当前,在各大NLP竞赛中,对抗训练已然成为上分神器,尤其是fgm和pgd使用较多,下面来说说吧。对抗训练是一种引入噪声的训练方式,可以对参数进行正则化,提升模型鲁棒性和泛化能力。
fgm
FGM的全称是Fast Gradient Method, 出现于Adversarial Training Methods for Semi-supervised Text Classification这篇论文,FGM是根据具体的梯度进行scale,得到更好的对抗样本:
整个对抗训练的过程如下,伪代码如下:
- 1.计算x的前向loss、反向传播得到梯度;
- 2.根据embedding矩阵的梯度计算出r,并加到当前embedding上,相当于x+r;
- 3.计算x+r的前向loss,反向传播得到对抗的梯度,累加到(1)的梯度上;
- 4.将embedding恢复为(1)时的值;
- 5.根据(3)的梯度对参数进行更新。
fgm代码实现如下:
class FGM:
def __init__(self, model: nn.Module, eps=1.):
self.model = (
model.module if hasattr(model, "module") else model
)
self.eps = eps
self.backup = {}
# only attack word embedding
def attack(self, emb_name='word_embeddings'):
for name, param in self.model.named_parameters():
if param.requires_grad and emb_name in name:
self.backup[name] = param.data.clone()
norm = torch.norm(param.grad)
if norm and not torch.isnan(norm):
r_at = self.eps * param.grad / norm
param.data.add_(r_at)
def restore(self, emb_name='word_embeddings'):
for name, para in self.model.named_parameters():
if para.requires_grad and emb_name in name:
assert name in self.backup
para.data = self.backup[name]
self.backup = {}
fgm应用代码如下:
##对应第一步
loss = model(**batch_data)[0]
loss.backward()
##对应第二步
fgm.attack()
#对应第三步
loss_adv = model(**batch_data)[0]
loss_adv.backward()
#对应第四步
fgm.restore()
#对应第五步
optimizer.step()
pgd
FGM直接通过epsilon参数一下子算出了对抗扰动,这样得到的可能不是最优的。因此PGD进行了改进,多迭代几次,慢慢找到最优的扰动。
引用:
FGM简单粗暴的“一步到位”,可能走不到约束内的最优点。PGD则是“小步走,多走几步”,如果走出了扰动半径为epsilon的空间,就映射回“球面”上,以保证扰动不要过大
并且
pgd整个对抗训练的过程如下,伪代码如下:
- 1.计算x的前向loss、反向传播得到梯度并备份;
- 2.对于每步t:
-
a.根据embedding矩阵的梯度计算出r,并加到当前embedding上,相当于x+r(超出范围则投影回epsilon内);
-
if t 不是最后一步,则进行b步骤:将模型梯度归0,根据a的x+r计算前后向并得到梯度,继续a步骤;if t 是最后一步,则进行c步骤:恢复(1)的梯度,根据a的x+r计算前后向得到梯度并将梯度累加到(1)的梯度上,跳出循环;
- 3.将embedding恢复为(1)时的值;
- 4.根据2c的梯度对参数进行更新。
可以看到,在循环中r是逐渐累加的,要注意的是最后更新参数只使用最后一个x+r算出来的梯度。
pgd代码实现如下:
class PGD:
def __init__(self, model, eps=1., alpha=0.3):
self.model = (
model.module if hasattr(model, "module") else model
)
self.eps = eps
self.alpha = alpha
self.emb_backup = {}
self.grad_backup = {}
def attack(self, emb_name='word_embeddings', is_first_attack=False):
for name, param in self.model.named_parameters():
if param.requires_grad and emb_name in name:
if is_first_attack:
self.emb_backup[name] = param.data.clone()
norm = torch.norm(param.grad)
if norm != 0 and not torch.isnan(norm):
r_at = self.alpha * param.grad / norm
param.data.add_(r_at)
param.data = self.project(name, param.data)
def restore(self, emb_name='word_embeddings'):
for name, param in self.model.named_parameters():
if param.requires_grad and emb_name in name:
assert name in self.emb_backup
param.data = self.emb_backup[name]
self.emb_backup = {}
def project(self, param_name, param_data):
r = param_data - self.emb_backup[param_name]
if torch.norm(r) > self.eps:
r = self.eps * r / torch.norm(r)
return self.emb_backup[param_name] + r
def backup_grad(self):
for name, param in self.model.named_parameters():
if param.requires_grad and param.grad is not None:
self.grad_backup[name] = param.grad.clone()
def restore_grad(self):
for name, param in self.model.named_parameters():
if param.requires_grad and param.grad is not None:
param.grad = self.grad_backup[name]
pgd应用代码如下:
loss = model(**batch_data)[0]
loss.backward()
pgd.backup_grad()
for _t in range(pgd_k):
pgd.attack(is_first_attack=(_t == 0))
if _t != pgd_k - 1:
model.zero_grad()
else:
pgd.restore_grad()
loss_adv = model(**batch_data)[0]
loss_adv.backward()
pgd.restore()
optimizer.step()
注:在torch中,每次迭代时,如果不把模型的梯度清零,会默认将模型每次迭代的梯度累加的。