from numpy.core.fromnumeric import size
import torch
import torch.nn as nn
import torch.nn.functional as F
#定义网络类
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
#定义第一层卷积层,输入维度=1,输出维度=6,卷积核大小3*3
self.conv1=nn.Conv2d(1,6,3)
#定义第二层卷积层,输入维度=6,输出维度=16,卷积核大小3*3
self.conv2=nn.Conv2d(6,16,3)
#定义三层全连接神经网络
self.fc1= nn.Linear(16*6*6,120)
self.fc2= nn.Linear(120,84)
self.fc3= nn.Linear(84,10)
def forward(self,x):
#注意:任意卷积层后面要加激活层,池化层
x= F.max_pool2d(F.relu(self.conv1(x)),(2,2))
x= F.max_pool2d(F.relu(self.conv2(x),2))
#经过卷积层的处理后,张量要进入全连接层,进入前调整张量的形状
x= x.view(-1,self.num_flat_features(x))
x= F.relu(self.fc1(x))
x= F.relu(self.fc2(x))
x= self.fc3(x)
return x
def num_flat_features(self,x):
size=x.size()[1:]
num_features =1
for s in size:
num_features *=s
return num_features
net=Net()
print(net)