官网中文文档 神经网络
核心代码
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 输入图像channel:1;输出channel:6;5x5卷积核
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# 2x2 Max pooling
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# 如果是方阵,则可以只使用一个数字进行定义
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # 除去批处理维度的其他所有维度
num_features = 1
for s in size:
num_features *= s
return num_features
查看可学习参数
params = list(net.parameters())
len(params)
params[0].size() # conv1's .weight
输出
10
torch.Size([6, 1, 5, 5])
这 10 个参数分别是
conv1.weight conv1.bias
conv2.weight conv2.bias
fc1.weight fc1.bias
fc2.weight fc2.bias
fc3.weight fc3.bias
如果想要详细查看,
params[0]
# 或
for parameter in net.named_parameters() :
print(parameter)
conv1.weight 和 conv2.weight 的大小如下,分别表示 6 个 1 * 5 * 5 的卷积核,16 个 6 * 5 * 5 的卷积核
torch.Size([6, 1, 5, 5])
torch.Size([16, 6, 5, 5])