吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:卷积神经网络入门

from keras import layers
from keras import models

model = models.Sequential()
#首层接收2维输入
model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)))
model.add(layers.MaxPooling2D(2,2))
model.add(layers.Conv2D(64, (3,3), activation='relu'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(64, (3,3), activation='relu'))

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary()

吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:卷积神经网络入门

 

 

from keras.datasets import mnist
from keras.utils import to_categorical

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_images, train_labels, epochs = 5, batch_size=64)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print(test_acc)

吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:卷积神经网络入门

 

上一篇:PyTorch-LSTM


下一篇:Keras 中间层可视化,附代码详解,以Mnist数字为对象