encoder_input = keras.Input(shape=(28, 28, 1), name="img") x = layers.Conv2D(16, 3, activation="relu")(encoder_input) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.MaxPooling2D(3)(x) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.Conv2D(16, 3, activation="relu")(x) encoder_output = layers.GlobalMaxPooling2D()(x) encoder = keras.Model(encoder_input, encoder_output, name="encoder") encoder.summary() x = layers.Reshape((4, 4, 1))(encoder_output) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) x = layers.Conv2DTranspose(32, 3, activation="relu")(x) x = layers.UpSampling2D(3)(x) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) decoder_output = layers.Conv2DTranspose(1, 3, activation="relu")(x) autoencoder = keras.Model(encoder_input, decoder_output, name="autoencoder") autoencoder.summary()
Model: "encoder" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= img (InputLayer) [(None, 28, 28, 1)] 0 _________________________________________________________________ conv2d (Conv2D) (None, 26, 26, 16) 160 _________________________________________________________________ conv2d_1 (Conv2D) (None, 24, 24, 32) 4640 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 8, 8, 32) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 6, 6, 32) 9248 _________________________________________________________________ conv2d_3 (Conv2D) (None, 4, 4, 16) 4624 _________________________________________________________________ global_max_pooling2d (Global (None, 16) 0 ================================================================= Total params: 18,672 Trainable params: 18,672 Non-trainable params: 0 _________________________________________________________________ Model: "autoencoder" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= img (InputLayer) [(None, 28, 28, 1)] 0 _________________________________________________________________ conv2d (Conv2D) (None, 26, 26, 16) 160 _________________________________________________________________ conv2d_1 (Conv2D) (None, 24, 24, 32) 4640 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 8, 8, 32) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 6, 6, 32) 9248 _________________________________________________________________ conv2d_3 (Conv2D) (None, 4, 4, 16) 4624 _________________________________________________________________ global_max_pooling2d (Global (None, 16) 0 _________________________________________________________________ reshape (Reshape) (None, 4, 4, 1) 0 _________________________________________________________________ conv2d_transpose (Conv2DTran (None, 6, 6, 16) 160 _________________________________________________________________ conv2d_transpose_1 (Conv2DTr (None, 8, 8, 32) 4640 _________________________________________________________________ up_sampling2d (UpSampling2D) (None, 24, 24, 32) 0 _________________________________________________________________ conv2d_transpose_2 (Conv2DTr (None, 26, 26, 16) 4624 _________________________________________________________________ conv2d_transpose_3 (Conv2DTr (None, 28, 28, 1) 145 ================================================================= Total params: 28,241 Trainable params: 28,241 Non-trainable params: 0 _________________________________________________________________