resnet.py,用来构造一个18或34层的残差神经网络:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, Sequential
class BasicBlock(layers.Layer):
def __init__(self, filter_num, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding='same')
self.bn1 = layers.BatchNormalization()
self.relu = layers.Activation('relu')
self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding='same')
self.bn2 = layers.BatchNormalization()
if stride != 1:
self.downsample = Sequential()
self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride))
else :
self.downsample = lambda x:x
def call(self, inputs, training=None):
out = self.conv1(inputs)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
identity = self.downsample(inputs)
output = layers.add([out, identity])
output = tf.nn.relu(output)
return output
class ResNet(keras.Model):
def __init__(self, layer_dims, num_classes=100):
super(ResNet, self).__init__()
self.stem = Sequential([layers.Conv2D(64, (3, 3), strides=(1, 1)),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding='same')
])
self.layer1 = self.build_resblock(64, layer_dims[0])
self.layer2 = self.build_resblock(128, layer_dims[1], stride=2)
self.layer3 = self.build_resblock(256, layer_dims[2], stride=2)
self.layer4 = self.build_resblock(512, layer_dims[3], stride=2)
self.avgpool = layers.GlobalAveragePooling2D()
self.fc = layers.Dense(num_classes)
def call(self, inputs, training=None):
x = self.stem(inputs)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = self.fc(x)
return x
def build_resblock(self, filter_num, blocks, stride=1):
res_blocks = Sequential()
res_blocks.add(BasicBlock(filter_num, stride))
for _ in range(1, blocks):
res_blocks.add(BasicBlock(filter_num, stride=1))
return res_blocks
def resnet18():
return ResNet([2,2,2,2])
def resnet34():
return ResNet([3,4,6,3])
cifar100_res.py,利用resnet.py中的18层残差神经网络来训练CIFAR100数据集:
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
from resnet import resnet18, resnet34
tf.random.set_seed(1234)
(x, y), (x_test, y_test) = datasets.cifar100.load_data()
x = 2 * tf.cast(x, dtype=tf.float32)/255. - 1
y = tf.cast(y, dtype=tf.int32)
y = tf.squeeze(y, axis=1)
x_test = 2 * tf.cast(x_test, dtype=tf.float32)/255. - 1
y_test = tf.cast(y_test, dtype=tf.int32)
y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.shuffle(1000).batch(64)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_db = test_db.batch(64)
def main():
model = resnet18()
model.build(input_shape = (None, 32, 32, 3))
optimizer = optimizers.Adam(lr=1e-3)
for epoch in range(50):
for step, (x,y) in enumerate(train_db):
with tf.GradientTape() as tape:
logits = model(x)
y_onehot = tf.one_hot(y, depth=100)
loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss,model.trainable_variables)
optimizer.apply_gradients(zip(grads,model.trainable_variables))
if step % 100 == 0:
print(epoch, step, 'losses:', float(loss))
total_num = 0
total_correct = 0
for x,y in test_db:
logits = model(x)
prob = tf.nn.softmax(logits, axis=1)
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred,y), dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_num += x.shape[0]
total_correct += int(correct)
acc = total_correct / total_num
print(epoch, 'acc:', acc)
if __name__ == '__main__':
main()