Outline
-
keras.Sequential
-
keras.layers.Layer
-
keras.Model
keras.Sequential
-
model.trainable_variables # 管理参数
-
model.call()
network = Sequential([
layers.Dense(256, acitvaiton='relu'),
layers.Dense(128, acitvaiton='relu'),
layers.Dense(64, acitvaiton='relu'),
layers.Dense(32, acitvaiton='relu'),
layers.Dense(10)
])
network.build(input_shape=(None, 28 * 28))
network.summary()
Layer/Model
-
Inherit from keras.layers.Layer/keras.Model
-
__init__
-
call
-
Model:compile/fit/evaluate
MyDense
class MyDense(layers.Layer): def __init__(self, inp_dim, outp_dim): super(MyDense, self).__init__()
self.kernel = self.add_variable(<span class="hljs-string">'w'</span>, [imp_dim, outp_dim]) self.bias = self.add_variable(<span class="hljs-string">'b'</span>, [outp_dim]) <span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">call</span>(<span class="hljs-params">self, inputs, training=<span class="hljs-literal">None</span></span>):</span> out = <span class="hljs-built_in">input</span> @ self.kernel + self.bias <span class="hljs-keyword">return</span> out
MyModel
class MyModel(keras.Model): def __init__(self): super(MyModel, self).__init__() self.fc1 = MyDense(28 * 28, 256) self.fc2 = MyDense(256, 128) self.fc3 = MyDense(128, 64) self.fc4 = MyDense(64, 32) self.fc5 = MyDense(32, 10)
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">call</span>(<span class="hljs-params">self, iputs, training=<span class="hljs-literal">None</span></span>):</span> x = self.fc1(inputs) x = tf.nn.relu(x) x = self.fc2(x) x = tf.nn.relu(x) x = self.fc3(x) x = tf.nn.relu(x) x = self.fc4(x) x = tf.nn.relu(x) x = self.fc5(x) <span class="hljs-keyword">return</span> x