手写数字识别流程 MNIST手写数字集7000*10张图片 60k张图片训练,10k张图片测试 每张图片是28*28,如果是彩色图片是28*28*3 0-255表示图片的灰度值,0表示纯白,255表示纯黑 打平28*28的矩阵,得到28*28=784的向量 对于b张图片得到[b,784];然后对于b张图片可以给定编码 把上述的普通编码给定成独热编码,但是独热编码都是概率值,并且概率值相加为1,类似于softmax回归 套用线性回归公式 X[b,784] W[784,10] b[10] 得到 [b,10] 高维图片实现非常复杂,一个线性模型无法完成,因此可以添加非线性因子 f(X@W+b),使用激活函数让其非线性化,引出relu函数 1 =relu(X@W1+b1) H2 = relu(h1@W2+b2) Out = relu(h2@W3+b3) 第一步,把[1,784]变成[1,512]变成[1,256]变成[1,10] 得到[1,10]后将结果进行独热编码 使用欧氏距离或者使用mse进行误差度量 [1,784]通过三层网络输出一个[1,10]
# [b,784] ==> [b,256] ==> [b,128] ==> [b,10] # [dim_in,dim_out],[dim_out] w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1)) b1 = tf.Variable(tf.zeros([256])) w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1)) b2 = tf.Variable(tf.zeros([128])) w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1)) b3 = tf.Variable(tf.zeros([10]))
# learning rate lr = 1e-3
for epoch in range(10): # iterate db for 10 # tranin every train_db for step, (x, y) in enumerate(train_db): # x: [128,28,28] # y: [128] # [b,28,28] ==> [b,28*28] x = tf.reshape(x, [-1, 28*28]) with tf.GradientTape() as tape: # only data types of tf.variable are logged # x: [b,28*28] # h1 = x@w1 + b1 # [b,784]@[784,256]+[256] ==> [b,256] + [256] ==> [b,256] + [b,256] h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256]) h1 = tf.nn.relu(h1) # [b,256] ==> [b,128] # h2 = x@w2 + b2 # b2 can broadcast automatic h2 = h1 @ w2 + b2 h2 = tf.nn.relu(h2) # [b,128] ==> [b,10] out = h2 @ w3 + b3 # compute loss # out: [b,10] # y:[b] ==> [b,10] y_onehot = tf.one_hot(y, depth=10) # mse = mean(sum(y-out)^2) # [b,10] loss = tf.square(y_onehot - out) # mean:scalar loss = tf.reduce_mean(loss) # compute gradients grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3]) # w1 = w1 - lr * w1_grad # w1 = w1 - lr * grads[0] # not in situ update # in situ update w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) w2.assign_sub(lr * grads[2]) b2.assign_sub(lr * grads[3]) w3.assign_sub(lr * grads[4]) b3.assign_sub(lr * grads[5]) if(step % 100 == 0): print(f'epoch:{epoch}, step: {step}, loss:{float(loss)}')