import tensorflow as tf a = tf.random.shuffle(tf.range(5)) a
tf.sort(a, direction='DESCENDING')
# 返回索引 tf.argsort(a, direction='DESCENDING')
idx = tf.argsort(a, direction='DESCENDING') tf.gather(a, idx)
idx = tf.argsort(a, direction='DESCENDING') tf.gather(a, idx)
a = tf.random.uniform([3, 3], maxval=10, dtype=tf.int32) a
tf.sort(a)
tf.sort(a, direction='DESCENDING')
idx = tf.argsort(a) idx
# 返回前2个值 res = tf.math.top_k(a, 2) res
res.values
res.indices
prob = tf.constant([[0.1, 0.2, 0.7], [0.2, 0.7, 0.1]]) target = tf.constant([2, 0])
# 概率最大的索引在最前面 k_b = tf.math.top_k(prob, 3).indices k_b
k_b = tf.transpose(k_b, [1, 0]) k_b
# 对真实值broadcast,与prod比较 target = tf.broadcast_to(target, [3, 2]) target
def accuracy(output, target, topk=(1, )): maxk = max(topk) batch_size = target.shape[0] pred = tf.math.top_k(output, maxk).indices pred = tf.transpose(pred, perm=[1, 0]) target_ = tf.broadcast_to(target, pred.shape) correct = tf.equal(pred, target_) res = [] for k in topk: correct_k = tf.cast(tf.reshape(correct[:k], [-1]), dtype=tf.float32) correct_k = tf.reduce_sum(correct_k) acc = float(correct_k / batch_size) res.append(acc) return res
# 10个样本6类 output = tf.random.normal([10, 6]) # 使得所有样本的概率加起来为1 output = tf.math.softmax(output, axis=1) # 10个样本对应的标记 target = tf.random.uniform([10], maxval=6, dtype=tf.int32) print(f'prob: {output.numpy()}') pred = tf.argmax(output, axis=1) print(f'pred: {pred.numpy()}') print(f'label: {target.numpy()}') acc = accuracy(output, target, topk=(1, 2, 3, 4, 5, 6)) print(f'top-1-6 acc: {acc}')