import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow.keras as keras
from sklearn.preprocessing import StandardScaler
fashsion_minist = tf.keras.datasets.fashion_mnist
(x_train_all, y_train_all), (x_test, y_test) = fashsion_minist.load_data()
x_valid, x_train = x_train_all[:5000], x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
scaler = StandardScaler()
# todo 搞一下这个reshape
x_train_scaler = scaler.fit_transform(x_train.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_valid_scaled = scaler.transform(
x_valid.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_test_scaled = scaler.transform(
x_test.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
def show_single_image(image_arr):
plt.imshow(image_arr)
plt.show()
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28]))
for _ in range(20):
model.add(keras.layers.Dense(100, activation='relu'))
model.add(keras.layers.BatchNormalization())
# dropout 一般在全连接层后设置
model.add(keras.layers.AlphaDropout(rate=0.5))
# AlphaDropout: 1. 均值和方差不变 2. 归一化性质也不变 更好用
# model.add(keras.layers.Dropout(rate=0.5))
model.add(keras.layers.Dense(10, activation='softmax'))
keras.optimizers.Adam()
model.compile(loss="sparse_categorical_crossentropy",
optimizer="sgd",
metrics=["accuracy"])
model.summary()
history = model.fit(x_train, y_train, batch_size=256, epochs=10, validation_data=(x_valid, y_valid))
print(history.history)
def plot_learning_curves(history):
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.ylim(0, 1)
plt.show()
plot_learning_curves(history)
model.evaluate(x_test, y_test)