使用scikit-learn进行建模预测和评估操作_泰坦尼克号获救预测

# coding: utf-8

# In[142]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt # In[143]: # 导入数据
titanic = pd.read_csv('train.csv')
titanic.head(5)
# print(titanic.describe()) # In[144]: titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median())
print(titanic.describe()) # In[145]: print(titanic['Sex'].unique()) # Replace all the occurences of male with the number 0.
# 将字符值转换成 数值
# 进行一个属性值转换
titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0
titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 # In[146]: # 登船地址
print(titanic['Embarked'].unique())
titanic['Embarked'] = titanic['Embarked'].fillna('S')
titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0
titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1
titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 # In[147]: # Import the linear regression class (线性回归)
from sklearn.linear_model import LinearRegression
# Sklearn also has a helper that makes it easy to do cross validation(交叉验证)
from sklearn.cross_validation import KFold # The Columns we'll use to predict the target
predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] # Initialize our algorithm class
alg = LinearRegression()
# Generate(生成) cross validation folds(交叉验证) for the titanic dataset.
# We set random_state to ensure we get the same splits(相同的分割) every time we run this.
kf = KFold(titanic.shape[0], n_folds=3, random_state=1) # 预测结果
predictions = []
# 训练集, 测试集, 交叉验证
for train, test in kf:
# The predictors we're using the train the algorithm.
# Note how we only take the rows in the train folds (只在训练集中进行)
train_predictors = (titanic[predictors].iloc[train, :])
# The target we're using to train the algorithm
train_target = titanic['Survived'].iloc[train]
# Training the algorithm using the prodictors and target
# 训练数据的 X, Y ==> 让他能进行判断的操作
alg.fit(train_predictors, train_target)
# we can now make predictions on the test fold
test_predictions = alg.predict(titanic[predictors].iloc[test, :])
predictions.append(test_predictions) # In[148]: import numpy as np # The Predictions are in three separate numpy arrays. Concatenate them into one.
# We concatenate them on axis 0, as they only have one axis.我们将它们连接在轴0上,因为它们只有一个轴
predictions = np.concatenate(predictions, axis = 0) # Map predictions to outcomes (only possible outcome are 1 and 0)
predictions[predictions > 0.5] = 1
predictions[predictions <= .5] = 0 # 进行评估模型
accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions)
print(accuracy) # In[149]: from sklearn import cross_validation
from sklearn.linear_model import LogisticRegression # Initialize our algorithm
alg = LogisticRegression(random_state=1)
# Compute the accuracy score for all the cross validation folds. (计算所有交叉验证折叠的精度分数。)
# (much simpler than what we did before !)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3)
# Take the mean of the scores (because we have one for each fold)
print(scores.mean()) # ### 随机森林 # In[150]: titanic_test = pd.read_csv('test.csv')
titanic_test['Age'] = titanic_test['Age'].fillna(titanic['Age'].median())
titanic_test['Fare'] = titanic_test['Fare'].fillna(titanic_test['Fare'].median())
titanic_test.loc[titanic_test['Sex'] == 'male', 'Sex'] = 0
titanic_test.loc[titanic_test['Sex'] == 'female', 'Sex'] = 1
titanic_test['Embarked'] = titanic_test['Embarked'].fillna('S') titanic_test.loc[titanic_test['Embarked'] == 'S', 'Embarked'] = 0
titanic_test.loc[titanic_test['Embarked'] == 'C', 'Embarked'] = 1
titanic_test.loc[titanic_test['Embarked'] == 'Q', 'Embarked'] = 2 # In[151]: from sklearn import cross_validation
from sklearn.ensemble import RandomForestClassifier #选中一些特征
predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] # Initialize our algorithm with the default paramters
# random_state = 1 表示此处代码多运行几次得到的随机值都是一样的,如果不设置,两次执行的随机值是不一样的
# n_estimators 指定有多少颗决策树,树的分裂的条件是:
# min_samples_split 代表样本不停的分裂,某一个节点上的样本如果只有2个了 ,就不再继续分裂了
# min_samples_leaf 是控制叶子节点的最小个数
alg = RandomForestClassifier(random_state=1, n_estimators=10, min_samples_split=2, min_samples_leaf=1) # Compute the accuracy score for all the cross validation folds (nuch simpler than what we did before)
# 进行交叉验证
kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=kf) # Take the mean of the scores (because we have one for each fold)
print(scores.mean()) # In[152]: # 建立100多个决策树
alg = RandomForestClassifier(random_state=1, n_estimators=100, min_samples_split=4, min_samples_leaf=2)
# Compute the accuracy score
kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=kf) # Take the mean of the scores (because we have one for each fold)
print(scores.mean()) # ## 关于特征提取问题 (非常关键)
# - 尽可能多的提取特征
# - 看不同特征的效果
# - 特征提取是数据挖掘里很- 要的一部分
# - 以上使用的特征都是数据里已经有的了,在真实的数据挖掘里我们常常没有合适的特征,需要我们自己取提取
# # In[153]: # Generating a familysize column
# 合并数据 :自己生成一个特征,家庭成员的大小:兄弟姐妹+老人孩子
titanic['FamilySize'] = titanic['SibSp'] + titanic['Parch'] # The .apply method generates a new series 名字的长度(据说国外的富裕的家庭都喜欢取很长的名字)
titanic['NameLength'] = titanic['Name'].apply(lambda x: len(x)) # In[154]: import re # A function to get the title from a name
def get_title(name):
# Use a regular expression to search for a title.
# Titles always consist of capital and lowercase letters.
title_search = re.search(' ([A-Za-z]+)\.', name)
# If the title exists extract and return it.
if title_search:
return title_search.group(1)
return ""
# Get all the titles and print how often each one occurs.
titles = titanic['Name'].apply(get_title)
print(pd.value_counts(titles)) # 输出看看, 相同数量的,设置相同映射 # 国外不同阶层的人都有不同的称呼
# Map each title to an integer. Some titles are very rare. and are compressed into the same codes as other
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Dr": 5, "Rev": 6, "Major": 7, "Col": 7, "Mlle": 8,
"Mme": 8, "Don": 9, "Lady": 10, "Countess": 10, "Jonkheer": 10, "Sir": 9, "Capt": 7, "Ms": 2 }
for k, v in title_mapping.items():
#将不同的称呼替换成机器可以计算的数字
titles[titles == k] = v # Verify that we converted everything
print(pd.value_counts(titles)) # Add in the title column
titanic['Title'] = titles # In[155]: # 进行特征选择
# 特征重要性分析
# 分析 不同特征对 最终结果的影响
# 例如 衡量age列的重要程度时,什么也不干,得到一个错误率error1,
# 加入一些噪音数据,替换原来的值(注意,此时其他列的数据不变),又得到一个一个错误率error2
# 两个错误率的差值 可以体现这一个特征的重要性
import numpy as np
from sklearn.feature_selection import SelectKBest, f_classif
import matplotlib.pylab as plt # 选中一些特征
predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', "Embarked",
'FamilySize', 'Title', 'NameLength'] # Perform feature selection 选择特性
selector = SelectKBest(f_classif, k = 5)
selector.fit(titanic[predictors], titanic['Survived']) # Get the raw p-values(P 值) for each feature, and transform from p-values into scores
scores = -np.log10(selector.pvalues_) # Plot the scores. See how "Plcass", "Sex", "Title", and "Fare" are the best ?
plt.bar(range(len(predictors)), scores)
plt.xticks(range(len(predictors)), predictors, rotation='vertical')
plt.show() # 通过以上的特征重要性分析, 选择出4个最重要的特性,重新进行随机森林的算法
# Pick only the four best features.
predictors = ['Pclass', 'Sex', 'Fare', 'Title'] alg = RandomForestClassifier(random_state=1, n_estimators=50, min_samples_split=8, min_samples_leaf=4) # 进行交叉验证
kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic["Survived"],cv=kf)
#目前的结果是没有得到提高,本处的目的是为了练习在随机森林中的特征选择,它对于实际的数据挖掘具有重要意义
print (scores.mean()) # ### 集成多种算法(减少过拟合) # In[156]: # 在竞赛中常用的耍赖的办法:集成多种算法,取最后每种算法的平均值,来减少过拟合
from sklearn.ensemble import GradientBoostingClassifier
import numpy as np # GradientBoostingClassifier也是一种随机森林的算法,可以集成多个弱分类器,然后变成强分类器
# The algorithm we want to ensemble
# We're using the more linear predictors for the logistic regression
# and everything with the gradient boosting
algorithms = [
[GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3),["Pclass","Sex","Age","Fare","Embarked","FamilySize","Title"]],
[LogisticRegression(random_state=1), ["Pclass","Sex","Age","Fare","Embarked","FamilySize","Title"]]
] # Initialize the cross validation folds
kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = []
for train, test in kf:
train_target = titanic['Survived'].iloc[train]
full_test_predictions = []
# Make predictions for each algorithm on each folds
for alg, predictors in algorithms:
# Fit the algorithm on the training data.
alg.fit(titanic[predictors].iloc[train, :], train_target)
# Select and predict on the test fold.
# The astype(float) is necessary to convert the dataframe
test_predictions = alg.predict_proba(titanic[predictors].iloc[test, :].astype(float))[:, 1]
full_test_predictions.append(test_predictions)
# Use a simple ensembling scheme - just average the predictions to get the final classification
# 两个算法, 分别算出来的 预测值, 取平均
test_predictions = (full_test_predictions[0] + full_test_predictions[1]) / 2
# Any value over 5 is assumed to be a 1 prediction, and below 5 is a 0 prediction
test_predictions[test_predictions <= 0.5] = 0
test_predictions[test_predictions > .5] = 1
predictions.append(test_predictions) # Put all the predictions together into one array
predictions = np.concatenate(predictions, axis=0) accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions)
print(accuracy) # In[157]: titles = titanic['Name'].apply(get_title)
print(pd.value_counts(titles)) # 输出看看, 相同数量的,设置相同映射 # 国外不同阶层的人都有不同的称呼
# Map each title to an integer. Some titles are very rare. and are compressed into the same codes as other
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Dr": 5, "Rev": 6, "Major": 7, "Col": 7, "Mlle": 8,
"Mme": 8, "Don": 9, "Lady": 10, "Countess": 10, "Jonkheer": 10, "Sir": 9, "Capt": 7, "Ms": 2 }
for k, v in title_mapping.items():
#将不同的称呼替换成机器可以计算的数字
titles[titles == k] = v
# Add in the title column
titanic_test['Title'] = titles
print(pd.value_counts(titanic_test['Title'])) # Now, we add the family size column.
titanic_test['FamilySize'] = titanic_test['SibSp'] + titanic_test['Parch'] # In[158]: predictors = ["Pclass","Sex","Age","Fare","Embarked","FamilySize","Title"] algorithms = [
[GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3), predictors],
[LogisticRegression(random_state=1), ["Pclass","Sex","Age","Fare","Embarked","FamilySize","Title"]]
] full_predictions = []
for alg, predictors in algorithms:
# Fit the Algorithm using the full training data
alg.fit(titanic[predictors], titanic['Survived'])
predictions = alg.predict_proba(titanic_test[predictors].astype(float))[:, 1]
full_predictions.append(predictions) # 梯度提升分类器产生更好的预测
# The gradient boosting classifier generates better predictions, so we weight it high
predictions = (full_predictions[0] * 3 + full_predictions[1]) / 4
predictions
上一篇:eclipse生成export生成jar详解


下一篇:转:关于将Java编译过的.class文件打成jar可执行文件/JAR详解