Mutex和Critical Section都是主要用于限制多线程(Multithread)对全局或共享的变量、对象或内存空间的访问。下面是其主要的异同点(不同的地方用黑色表示)。
Mutex | Critical Section | |
---|---|---|
性能和速度 | 慢。Mutex 是内核对象,相关函数的执行 (WaitForSingleObject,eleaseMutex)需要用户模式(User Mode)到内核模式(Kernel Mode)的转换,在x86处理器上这种转化一般要发费600个左右的 CPU指令周期 | 快,Critical Section本身不是内核对象,相关函数(EnterCriticalSection,LeaveCriticalSection)的调用一般都在用户模式内执行,在x86处理器上一般只需要发费9个左右的 CPU指令周期。只有当想要获得的锁正好被别的线程拥有时才会退化成和Mutex一样,即转换到内核模式,发费600个左右的 CPU指令周期 |
能否跨越进程(Process)边界 | 可以 | 不可以 |
定义写法 | HANDLE hmtx; | CRITICAL_SECTION cs; |
初始化写法 | hmtx= CreateMutex (NULL, FALSE, NULL); | InitializeCriticalSection(&cs); |
结束清除写法 | CloseHandle(hmtx); | DeleteCriticalSection(&cs); |
无限期等待的写法 | WaitForSingleObject (hmtx, INFINITE); | EnterCriticalSection(&cs); |
0等待(状态检测)的写法 | WaitForSingleObject (hmtx, 0); | TryEnterCriticalSection(&cs); |
**任意时间等待的写法 ** | WaitForSingleObject (hmtx, dwMilliseconds); | 不支持 |
锁释放的写法 | ReleaseMutex(hmtx); | LeaveCriticalSection(&cs); |
能否被一道用于等待其他内核对象 | 可以(使用WaitForMultipleObjects,WaitForMultipleObjectsEx,MsgWaitForMultipleObjects,MsgWaitForMultipleObjectsEx等等) | 不可 |
当拥有锁的线程死亡时 | Mutex变成abandoned状态,其他的等待线程可以获得锁 | CriticalSection的状态不可知(undefined),以后的动作就不能保证了。 |
有人测试结果,CriticalSection用时速度比Mutex快不少。
http://blog.csdn.net/dreamfreelancer/article/details/4237272
windows下100万次加/解锁测试:
CriticalSection用时:31ms
Mutex用时:953ms
结论:CriticalSection性能远远高于Mutex(高出约30倍)。因此,在能用CriticalSection时绝不用Mutex,当然,后者可命名,而前者不行,因此,Mutex可用于进程间通信,但CriticalSection通常只能用于线程间通信。
另外,Windows上Mutex和CriticalSection都是缺省Recursive的(且不能被改变,如要实现non-recursive互斥,得用Semophore),就是同一线程在获得锁后,再次加锁不会导致阻塞,这在Linux下需要指定。 但Mutex和CriticalSection行为还是存在差异,如果在同一线程内进行了Recursive的加,解锁操作,若因为程序错误导致解锁操作次数比加锁操作多,对于Mutex,这不会有任何问题(linux和Windows都是如此),但CriticalSection表现却不同,多于必要的Unlock操作会导致下次Lock操作被阻塞。
Demo code CRITICAL_SECTION
#include <windows.h>
#include "stdio.h"
CRITICAL_SECTION g_cs;
LRESULT WINAPI WriteThread(PVOID arg)
{
EnterCriticalSection(&g_cs);
printf("WriteThread \n");
LeaveCriticalSection(&g_cs);
return 0;
}
LRESULT WINAPI ReadThread(PVOID arg)
{
EnterCriticalSection(&g_cs);
printf("ReadThread \n");
LeaveCriticalSection(&g_cs);
return 0;
}
int main1()
{
HANDLE hThreadArray[2];
InitializeCriticalSection(&g_cs);
hThreadArray[0] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)WriteThread, NULL, 0, NULL);
hThreadArray[1] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)ReadThread, NULL, 0, NULL);
WaitForMultipleObjects(2, hThreadArray, TRUE, INFINITE);
DeleteCriticalSection(&g_cs);
getchar();
return 0;
}
Demo code Mutex
#include <windows.h>
#include "stdio.h"
HANDLE hMutex = NULL;
LRESULT WINAPI WriteThread2(PVOID arg)
{
WaitForSingleObject(hMutex, INFINITE);
printf("WriteThread2 \n");
ReleaseMutex(hMutex);
return 0;
}
LRESULT WINAPI ReadThread2(PVOID arg)
{
WaitForSingleObject(hMutex, INFINITE);
printf("ReadThread2 \n");
ReleaseMutex(hMutex);
return 0;
}
int main()
{
HANDLE hThreadArray[2];
hMutex = CreateMutex(NULL, FALSE, NULL);
hThreadArray[0] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)WriteThread2, NULL, 0, NULL);
hThreadArray[1] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)ReadThread2, NULL, 0, NULL);
WaitForMultipleObjects(2, hThreadArray, TRUE, INFINITE);
getchar();
CloseHandle(hMutex);
return 0;
}