A. Minimizing the String
很明显,贪心之比较从前往后第一个不一样的字符,所以可以从前往后考虑每一位,如果把它删除,他这一位就变成\(str[i + 1]\),所以只要\(str[i] > str[i + 1]\),删除后一定是最优的。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 200010;
int n;
char str[N];
int main(){
scanf("%d%s", &n, str + 1);
for(int i = 1; i < n; i++){
if(str[i] > str[i + 1]){
for(int j = 1; j <= n; j++)
if(j != i) printf("%c", str[j]);
return 0;
}
}
for(int i = 1; i < n; i++)
printf("%c", str[i]);
return 0;
}
B. Divisor Subtraction
单纯暴力可以会超时,考虑到所有偶数的最小质因子都是\(2\),故可以分类讨论,对于一个数\(x\):
- 若\(x \% 2 = 0\),则每次的\(d = 2\),操作次数为\(x / 2\)
- 若\(x\)为质数,最小质因子 $ = x\(,\)x - x = 0$,操作次数为\(1\)
- 若\(x\)为奇合数,则其的质因子必然也是奇数,这样\((x - d) \% 2 = 0\),可以返回第一步求解。
C. Meme Problem
按照题意,将式子化成一个一元二次方程,接着依照求根公式求解即可。
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int d;
int main(){
int T; scanf("%d", &T);
while(T--){
scanf("%d", &d);
double a, b, delta;
delta = d * d - 4 * d;
if(delta < 0) puts("N");
else delta = sqrt(delta), printf("Y %.9f %.9f\n", (delta + d) / 2, (-delta + d) / 2);
}
return 0;
}
D. Edge Deletion
可以先用\(Dijkstra\)跑一棵最短路的树,然后贪心,从节点\(1\)开始\(Bfs\),选择\(K\)条边即可。
(PS:没开\(long\) \(long\)被卡\(Wa\)了\(N\)次)
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long LL;
typedef pair<LL, int> PLI;
const int N = 300010, M = 300010;
const LL INF = 0x3f3f3f3f3f3f3f3f;
int n, m, k, numE = 1, head[N], fa[N], faEdge[N];
bool vis[N];
vector<int> G[N], ans;
LL dis[N];
priority_queue<PLI, vector<PLI>, greater<PLI> > q;
queue<int> Q;
struct Edge{
int next, to;
LL dis;
}e[M << 1];
void addEdge(int from, int to, int dis){
e[++numE].next = head[from];
e[numE].to = to;
e[numE].dis = dis;
head[from] = numE;
}
void Dijkstra(){
memset(dis, 0x3f, sizeof dis);
q.push(make_pair(0, 1)); dis[1] = 0;
while(!q.empty()){
PLI u = q.top(); q.pop();
if(vis[u.second]) continue;
vis[u.second] = true;
for(int i = head[u.second]; i; i = e[i].next){
int v = e[i].to;
if(dis[u.second] + e[i].dis < dis[v]){
dis[v] = dis[u.second] + e[i].dis;
fa[v] = u.second, faEdge[v] = i >> 1;
q.push(make_pair(dis[v], v));
}
}
}
}
void Bfs(){
Q.push(1);
while((!Q.empty()) && k > 0){
int u = Q.front(); Q.pop();
for(int i = 0; i < G[u].size(); i++){
int v = G[u][i]; k--;
ans.push_back(faEdge[v]);
Q.push(v);
if(!k) return;
}
}
}
int main(){
scanf("%d%d%d", &n, &m, &k);
for(int i = 1; i <= m; i++){
int u, v, w; scanf("%d%d%d", &u, &v, &w);
addEdge(u, v, w); addEdge(v, u, w);
}
Dijkstra();
for(int i = 1; i <= n; i++)
if(fa[i]) G[fa[i]].push_back(i);
Bfs();
printf("%d\n", (int)ans.size());
for(int i = 0; i < ans.size(); i++)
printf("%d ", ans[i]);
return 0;
}
E. Vasya and a Tree
考虑用树状数组维护和,现在的修改类似于"树上扫描线"的东西,因为遍历到子树之前一定会dfs到它的祖先,所以在祖先的区间处理时,进入就加上,退出就剪掉...
#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
const int N = 3 * 1e5 + 5;
typedef long long ll;
struct Edge{
int next,to;
}e[N * 2];
int n,m,head[N],numE=0;
ll c[N],ans[N];
vector<pair<int,int> > T[N];
void addEdge(int from,int to){
e[++numE].next = head[from];
e[numE].to = to;
head[from] = numE;
}
ll ask(int x){
ll ans = 0;
for(;x;x-=x&-x)ans += c[x];
return ans;
}
void add(int x,ll k){
for(;x<=n;x+=x&-x)c[x] += k;
}
void dfs(int u,int last,int dep){
for(int i=0;i<T[u].size();i++){
int d = T[u][i].first;
ll x = T[u][i].second;
add(dep,x);
add(dep + d + 1,-x);
}
ans[u] = ask(dep);
for(int i = head[u];i;i=e[i].next){
int v = e[i].to;
if(v == last)continue;
dfs(v,u,dep + 1);
}
for(int i=0;i<T[u].size();i++){
int d = T[u][i].first;
ll x = T[u][i].second;
add(dep,-x);
add(dep + d + 1,+x);
}
}
int main() {
scanf("%d",&n);
for(int i=2;i<=n;i++){
int x,y;
scanf("%d%d",&x,&y);
addEdge(x,y);
addEdge(y,x);
}
scanf("%d",&m);
for(int i=1;i<=m;i++){
int v,d,x;
scanf("%d%d%d",&v,&d,&x);
T[v].push_back(make_pair(d,x));
}
dfs(1,0,1);
for(int i=1;i<=n;i++){
printf("%lld ",ans[i]);
}
return 0;
}