条件路由规则由两个条件组成,分别用于对服务消费者和提供者进行匹配。比如有这样一条规则:
host = 10.20.153.10 => host = 10.20.153.11
该条规则表示 IP 为 10.20.153.10 的服务消费者只可调用 IP 为 10.20.153.11 机器上的服务,不可调用其他机器上的服务。条件路由规则的格式如下:
[服务消费者匹配条件] => [服务提供者匹配条件]
如果服务消费者匹配条件为空,表示不对服务消费者进行限制。如果服务提供者匹配条件为空,表示对某些服务消费者禁用服务。
初始化
首先看一下路由是如何初始化的。
当发起服务目录的notify通知时,会根据通知的url列表筛选出有路由规则的,然后添加到路由列表中:
List<URL> routerURLs = categoryUrls.getOrDefault(ROUTERS_CATEGORY, Collections.emptyList());
// 这里设置routers
toRouters(routerURLs).ifPresent(this::addRouters);
我们看一下url转Router的方法:
private Optional<List<Router>> toRouters(List<URL> urls) {
if (urls == null || urls.isEmpty()) {
return Optional.empty();
}
List<Router> routers = new ArrayList<>();
for (URL url : urls) {
if (EMPTY_PROTOCOL.equals(url.getProtocol())) {
continue;
}
String routerType = url.getParameter(ROUTER_KEY);
if (routerType != null && routerType.length() > 0) {
url = url.setProtocol(routerType);
}
try {
Router router = ROUTER_FACTORY.getRouter(url);
if (!routers.contains(router)) {
routers.add(router);
}
} catch (Throwable t) {
logger.error("convert router url to router error, url: " + url, t);
}
}
return Optional.of(routers);
}
通过ROUTER_FACTORY创建:
private static final RouterFactory ROUTER_FACTORY = ExtensionLoader.getExtensionLoader(RouterFactory.class)
.getAdaptiveExtension();
这里提供了几种路由方式:
file=org.apache.dubbo.rpc.cluster.router.file.FileRouterFactory
script=org.apache.dubbo.rpc.cluster.router.script.ScriptRouterFactory
condition=org.apache.dubbo.rpc.cluster.router.condition.ConditionRouterFactory
service=org.apache.dubbo.rpc.cluster.router.condition.config.ServiceRouterFactory
app=org.apache.dubbo.rpc.cluster.router.condition.config.AppRouterFactory
tag=org.apache.dubbo.rpc.cluster.router.tag.TagRouterFactory
mock=org.apache.dubbo.rpc.cluster.router.mock.MockRouterFactory
我们以条件路由为例:
public class ConditionRouterFactory implements RouterFactory {
public static final String NAME = "condition";
@Override
public Router getRouter(URL url) {
return new ConditionRouter(url);
}
}
根据URL创建了一个ConditionRouter对象,看一下它的初始化方法:
public ConditionRouter(URL url) {
this.url = url;
// 获取 priority 和 force 配置
this.priority = url.getParameter(PRIORITY_KEY, 0);
this.force = url.getParameter(FORCE_KEY, false);
this.enabled = url.getParameter(ENABLED_KEY, true);
// 获取路由规则
init(url.getParameterAndDecoded(RULE_KEY));
}
然后是init方法:
public void init(String rule) {
try {
if (rule == null || rule.trim().length() == 0) {
throw new IllegalArgumentException("Illegal route rule!");
}
rule = rule.replace("consumer.", "").replace("provider.", "");
// 定位 => 分隔符
int i = rule.indexOf("=>");
// 分别获取服务消费者和提供者匹配规则
String whenRule = i < 0 ? null : rule.substring(0, i).trim();
String thenRule = i < 0 ? rule.trim() : rule.substring(i + 2).trim();
// 解析服务消费者匹配规则
Map<String, MatchPair> when = StringUtils.isBlank(whenRule) || "true".equals(whenRule) ? new HashMap<String, MatchPair>() : parseRule(whenRule);
// 解析服务提供者匹配规则
Map<String, MatchPair> then = StringUtils.isBlank(thenRule) || "false".equals(thenRule) ? null : parseRule(thenRule);
// NOTE: It should be determined on the business level whether the `When condition` can be empty or not.
this.whenCondition = when;
this.thenCondition = then;
} catch (ParseException e) {
throw new IllegalStateException(e.getMessage(), e);
}
}
ConditionRouter 构造方法先是对路由规则做预处理,然后调用 parseRule 方法分别对服务提供者和消费者规则进行解析,最后将解析结果赋值给 whenCondition 和 thenCondition 成员变量。
首先先看一下内部类MatchPair的定义:
protected static final class MatchPair {
final Set<String> matches = new HashSet<String>();
final Set<String> mismatches = new HashSet<String>();
private boolean isMatch(String value, URL param) {
...
}
}
isMatch方法后面规则匹配时再分析。这里我们知道定义了两个集合,分别用于存放匹配和不匹配的条件。
这里我们关注parseRule方法:
private static Map<String, MatchPair> parseRule(String rule)
throws ParseException {
// 定义条件映射集合
Map<String, MatchPair> condition = new HashMap<String, MatchPair>();
if (StringUtils.isBlank(rule)) {
return condition;
}
// Key-Value pair, stores both match and mismatch conditions
MatchPair pair = null;
// Multiple values
Set<String> values = null;
// 通过正则表达式匹配路由规则,ROUTE_PATTERN = ([&!=,]*)\s*([^&!=,\s]+)
// 这个表达式看起来不是很好理解,第一个括号内的表达式用于匹配"&", "!", "=" 和 "," 等符号。
// 第二括号内的用于匹配英文字母,数字等字符。举个例子说明一下:
// host = 2.2.2.2 & host != 1.1.1.1 & method = hello
// 匹配结果如下:
// 括号一 括号二
// 1. null host
// 2. = 2.2.2.2
// 3. & host
// 4. != 1.1.1.1
// 5. & method
// 6. = hello
final Matcher matcher = ROUTE_PATTERN.matcher(rule);
while (matcher.find()) { // Try to match one by one
// 获取括号一内的匹配结果
String separator = matcher.group(1);
// 获取括号二内的匹配结果
String content = matcher.group(2);
// Start part of the condition expression.
// 分隔符为空,表示匹配的是表达式的开始部分
if (StringUtils.isEmpty(separator)) {
// 创建 MatchPair 对象
pair = new MatchPair();
// 存储 <匹配项, MatchPair> 键值对,比如 <host, MatchPair>
condition.put(content, pair);
}
// The KV part of the condition expression
// 如果分隔符为 &,表明接下来也是一个条件
else if ("&".equals(separator)) {
// 尝试从 condition 获取 MatchPair
if (condition.get(content) == null) {
// 未获取到 MatchPair,重新创建一个,并放入 condition 中
pair = new MatchPair();
condition.put(content, pair);
} else {
pair = condition.get(content);
}
}
// The Value in the KV part.
// 分隔符为 =
else if ("=".equals(separator)) {
if (pair == null) {
throw new ParseException("Illegal route rule \""
+ rule + "\", The error char '" + separator
+ "' at index " + matcher.start() + " before \""
+ content + "\".", matcher.start());
}
values = pair.matches;
// 将 content 存入到 MatchPair 的 matches 集合中
values.add(content);
}
// The Value in the KV part.
// 分隔符为 !=
else if ("!=".equals(separator)) {
if (pair == null) {
throw new ParseException("Illegal route rule \""
+ rule + "\", The error char '" + separator
+ "' at index " + matcher.start() + " before \""
+ content + "\".", matcher.start());
}
values = pair.mismatches;
// 将 content 存入到 MatchPair 的 mismatches 集合中
values.add(content);
}
// The Value in the KV part, if Value have more than one items.
// 分隔符为 ,
else if (",".equals(separator)) { // Should be separated by ','
if (values == null || values.isEmpty()) {
throw new ParseException("Illegal route rule \""
+ rule + "\", The error char '" + separator
+ "' at index " + matcher.start() + " before \""
+ content + "\".", matcher.start());
}
// 将 content 存入到上一步获取到的 values 中,可能是 matches,也可能是 mismatches
values.add(content);
} else {
throw new ParseException("Illegal route rule \"" + rule
+ "\", The error char '" + separator + "' at index "
+ matcher.start() + " before \"" + content + "\".", matcher.start());
}
}
return condition;
}
以上就是路由规则的解析逻辑,该逻辑由正则表达式和一个 while 循环以及数个条件分支组成。下面通过一个示例对解析逻辑进行演绎。示例为 host = 2.2.2.2 & host != 1.1.1.1 & method = hello
。正则解析结果如下:
括号一 括号二
1. null host
2. = 2.2.2.2
3. & host
4. != 1.1.1.1
5. & method
6. = hello
现在线程进入 while 循环:
第一次循环:分隔符 separator = null,content = “host”。此时创建 MatchPair 对象,并存入到 condition 中,condition = {“host”: MatchPair@123}
第二次循环:分隔符 separator = “=",content = “2.2.2.2”,pair = MatchPair@123。此时将 2.2.2.2 放入到 MatchPair@123 对象的 matches 集合中。
第三次循环:分隔符 separator = “&",content = “host”。host 已存在于 condition 中,因此 pair = MatchPair@123。
第四次循环:分隔符 separator = “!=",content = “1.1.1.1”,pair = MatchPair@123。此时将 1.1.1.1 放入到 MatchPair@123 对象的 mismatches 集合中。
第五次循环:分隔符 separator = “&",content = “method”。condition.get(“method”) = null,因此新建一个 MatchPair 对象,并放入到 condition 中。此时 condition = {“host”: MatchPair@123, “method”: MatchPair@ 456}
第六次循环:分隔符 separator = “=",content = “2.2.2.2”,pair = MatchPair@456。此时将 hello 放入到 MatchPair@456 对象的 matches 集合中。
循环结束,此时 condition 的内容如下:
{
"host": {
"matches": ["2.2.2.2"],
"mismatches": ["1.1.1.1"]
},
"method": {
"matches": ["hello"],
"mismatches": []
}
}
路由匹配
在服务目录doList时触发路由匹配:
invokers = routerChain.route(getConsumerUrl(), invocation);
我们看一下routerChain的route方法:
public List<Invoker<T>> route(URL url, Invocation invocation) {
List<Invoker<T>> finalInvokers = invokers;
for (Router router : routers) {
finalInvokers = router.route(finalInvokers, url, invocation);
}
return finalInvokers;
}
就是对前面notify时添加的路由遍历执行route方法
我们看一下ConditionRouter的route方法:
@Override
public <T> List<Invoker<T>> route(List<Invoker<T>> invokers, URL url, Invocation invocation)
throws RpcException {
if (!enabled) {
return invokers;
}
if (CollectionUtils.isEmpty(invokers)) {
return invokers;
}
try {
// 先对服务消费者条件进行匹配,如果匹配失败,表明服务消费者 url 不符合匹配规则,
// 无需进行后续匹配,直接返回 Invoker 列表即可。比如下面的规则:
// host = 10.20.153.10 => host = 10.0.0.10
// 这条路由规则希望 IP 为 10.20.153.10 的服务消费者调用 IP 为 10.0.0.10 机器上的服务。
// 当消费者 ip 为 10.20.153.11 时,matchWhen 返回 false,表明当前这条路由规则不适用于
// 当前的服务消费者,此时无需再进行后续匹配,直接返回即可。
if (!matchWhen(url, invocation)) {
return invokers;
}
List<Invoker<T>> result = new ArrayList<Invoker<T>>();
// 服务提供者匹配条件未配置,表明对指定的服务消费者禁用服务,也就是服务消费者在黑名单中
if (thenCondition == null) {
logger.warn("The current consumer in the service blacklist. consumer: " + NetUtils.getLocalHost() + ", service: " + url.getServiceKey());
return result;
}
// 这里可以简单的把 Invoker 理解为服务提供者,现在使用服务提供者匹配规则对
// Invoker 列表进行匹配
for (Invoker<T> invoker : invokers) {
// 若匹配成功,表明当前 Invoker 符合服务提供者匹配规则。
// 此时将 Invoker 添加到 result 列表中
if (matchThen(invoker.getUrl(), url)) {
result.add(invoker);
}
}
// 返回匹配结果,如果 result 为空列表,且 force = true,表示强制返回空列表,
// 否则路由结果为空的路由规则将自动失效
if (!result.isEmpty()) {
return result;
} else if (force) {
logger.warn("The route result is empty and force execute. consumer: " + NetUtils.getLocalHost() + ", service: " + url.getServiceKey() + ", router: " + url.getParameterAndDecoded(RULE_KEY));
return result;
}
} catch (Throwable t) {
logger.error("Failed to execute condition router rule: " + getUrl() + ", invokers: " + invokers + ", cause: " + t.getMessage(), t);
}
// 原样返回,此时 force = false,表示该条路由规则失效
return invokers;
}
route 方法先是调用 matchWhen 对服务消费者进行匹配,如果匹配失败,直接返回 Invoker 列表。如果匹配成功,再对服务提供者进行匹配,匹配逻辑封装在了 matchThen 方法中。下面来看一下这两个方法的逻辑:
boolean matchWhen(URL url, Invocation invocation) {
// 服务消费者条件为 null 或空,均返回 true,比如:
// => host != 172.22.3.91
// 表示所有的服务消费者都不得调用 IP 为 172.22.3.91 的机器上的服务
return CollectionUtils.isEmptyMap(whenCondition) || matchCondition(whenCondition, url, null, invocation);
}
private boolean matchThen(URL url, URL param) {
// 服务提供者条件为 null 或空,表示禁用服务
return CollectionUtils.isNotEmptyMap(thenCondition) && matchCondition(thenCondition, url, param, null);
}
这两个方法长的有点像,不过逻辑上还是有差别的,大家注意看。这两个方法均调用了 matchCondition 方法,但它们所传入的参数是不同的。这个需要特别注意一下,不然后面的逻辑不好弄懂。下面我们对这几个参数进行溯源。matchWhen 方法向 matchCondition 方法传入的参数为 [whenCondition, url, null, invocation],第一个参数 whenCondition 为服务消费者匹配条件,这个前面分析过。第二个参数 url 源自 route 方法的参数列表,该参数由外部类调用 route 方法时传入。接下来再来看看 matchThen 向 matchCondition 方法传入的参数 [thenCondition, url, param, null]。第一个参数不用解释了。第二个和第三个参数来自 matchThen 方法的参数列表,这两个参数分别为服务提供者 url 和服务消费者 url。搞清楚这些参数来源后,接下来就可以分析 matchCondition 方法了。
private boolean matchCondition(Map<String, MatchPair> condition, URL url, URL param, Invocation invocation) {
// 将服务提供者或消费者 url 转成 Map
Map<String, String> sample = url.toMap();
boolean result = false;
// 遍历 condition 列表
for (Map.Entry<String, MatchPair> matchPair : condition.entrySet()) {
// 获取匹配项名称,比如 host、method 等
String key = matchPair.getKey();
String sampleValue;
//get real invoked method name from invocation
// 如果 invocation 不为空,且 key 为 mehtod(s),表示进行方法匹配
if (invocation != null && (METHOD_KEY.equals(key) || METHODS_KEY.equals(key))) {
// 从 invocation 获取被调用方法的名称
sampleValue = invocation.getMethodName();
} else if (ADDRESS_KEY.equals(key)) {
sampleValue = url.getAddress();
} else if (HOST_KEY.equals(key)) {
sampleValue = url.getHost();
} else {
// 从服务提供者或消费者 url 中获取指定字段值,比如 host、application 等
sampleValue = sample.get(key);
if (sampleValue == null) {
// 尝试通过 default.xxx 获取相应的值
sampleValue = sample.get(key);
}
}
if (sampleValue != null) {
// 调用 MatchPair 的 isMatch 方法进行匹配
if (!matchPair.getValue().isMatch(sampleValue, param)) {
// 只要有一个规则匹配失败,立即返回 false 结束方法逻辑
return false;
} else {
result = true;
}
} else {
//not pass the condition
// sampleValue 为空,表明服务提供者或消费者 url 中不包含相关字段。此时如果
// MatchPair 的 matches 不为空,表示匹配失败,返回 false。比如我们有这样
// 一条匹配条件 loadbalance = random,假设 url 中并不包含 loadbalance 参数,
// 此时 sampleValue = null。既然路由规则里限制了 loadbalance 必须为 random,
// 但 sampleValue = null,明显不符合规则,因此返回 false
if (!matchPair.getValue().matches.isEmpty()) {
return false;
} else {
result = true;
}
}
}
return result;
}
前半部分获取sampleValue的值,然后调用isMatch判断是否匹配:
private boolean isMatch(String value, URL param) {
// 情况一:matches 非空,mismatches 为空
if (!matches.isEmpty() && mismatches.isEmpty()) {
// 遍历 matches 集合,检测入参 value 是否能被 matches 集合元素匹配到。
// 举个例子,如果 value = 10.20.153.11,matches = [10.20.153.*],
// 此时 isMatchGlobPattern 方法返回 true
for (String match : matches) {
if (UrlUtils.isMatchGlobPattern(match, value, param)) {
return true;
}
}
// 如果所有匹配项都无法匹配到入参,则返回 false
return false;
}
// 情况二:matches 为空,mismatches 非空
if (!mismatches.isEmpty() && matches.isEmpty()) {
// 只要入参被 mismatches 集合中的任意一个元素匹配到,就返回 false
for (String mismatch : mismatches) {
if (UrlUtils.isMatchGlobPattern(mismatch, value, param)) {
return false;
}
}
// mismatches 集合中所有元素都无法匹配到入参,此时返回 true
return true;
}
// 情况三:matches 非空,mismatches 非空
if (!matches.isEmpty() && !mismatches.isEmpty()) {
//when both mismatches and matches contain the same value, then using mismatches first
// matches 和 mismatches 均为非空,此时优先使用 mismatches 集合元素对入参进行匹配。
// 只要 mismatches 集合中任意一个元素与入参匹配成功,就立即返回 false,结束方法逻辑
for (String mismatch : mismatches) {
if (UrlUtils.isMatchGlobPattern(mismatch, value, param)) {
return false;
}
}
// mismatches 集合元素无法匹配到入参,此时再使用 matches 继续匹配
for (String match : matches) {
// 只要 matches 集合中任意一个元素与入参匹配成功,就立即返回 true
if (UrlUtils.isMatchGlobPattern(match, value, param)) {
return true;
}
}
// 全部失配,则返回 false
return false;
}
// 情况四:matches 和 mismatches 均为空,此时返回 false
return false;
}
isMatch 方法逻辑比较清晰,由三个条件分支组成,用于处理四种情况。这里对四种情况下的匹配逻辑进行简单的总结,如下:
条件 | 过程 | |
---|---|---|
情况一 | matches 非空,mismatches 为空 | 遍历 matches 集合元素,并与入参进行匹配。只要有一个元素成功匹配入参,即可返回 true。若全部失配,则返回 false。 |
情况二 | matches 为空,mismatches 非空 | 遍历 mismatches 集合元素,并与入参进行匹配。只要有一个元素成功匹配入参,立即 false。若全部失配,则返回 true。 |
情况三 | matches 非空,mismatches 非空 | 优先使用 mismatches 集合元素对入参进行匹配,只要任一元素与入参匹配成功,就立即返回 false,结束方法逻辑。否则再使用 matches 中的集合元素进行匹配,只要有任意一个元素匹配成功,即可返回 true。若全部失配,则返回 false |
情况四 | matches 为空,mismatches 为空 | 直接返回 false |
isMatch 方法是通过 UrlUtils 的 isMatchGlobPattern 方法进行匹配,因此下面我们再来看看 isMatchGlobPattern 方法的逻辑。
public static boolean isMatchGlobPattern(String pattern, String value, URL param) {
if (param != null && pattern.startsWith("$")) {
// 引用服务消费者参数,param 参数为服务消费者 url
pattern = param.getRawParameter(pattern.substring(1));
}
// 调用重载方法继续比较
return isMatchGlobPattern(pattern, value);
}
public static boolean isMatchGlobPattern(String pattern, String value) {
// 对 * 通配符提供支持
if ("*".equals(pattern)) {
// 匹配规则为通配符 *,直接返回 true 即可
return true;
}
if (StringUtils.isEmpty(pattern) && StringUtils.isEmpty(value)) {
// pattern 和 value 均为空,此时可认为两者相等,返回 true
return true;
}
if (StringUtils.isEmpty(pattern) || StringUtils.isEmpty(value)) {
// pattern 和 value 其中有一个为空,表明两者不相等,返回 false
return false;
}
// 定位 * 通配符位置
int i = pattern.lastIndexOf('*');
// doesn't find "*"
if (i == -1) {
// 匹配规则中不包含通配符,此时直接比较 value 和 pattern 是否相等即可,并返回比较结果
return value.equals(pattern);
}
// 通配符 "*" 在匹配规则尾部,比如 10.0.21.*
// "*" is at the end
else if (i == pattern.length() - 1) {
// 检测 value 是否以“不含通配符的匹配规则”开头,并返回结果。比如:
// pattern = 10.0.21.*,value = 10.0.21.12,此时返回 true
return value.startsWith(pattern.substring(0, i));
}
// "*" is at the beginning
// 通配符 "*" 在匹配规则头部
else if (i == 0) {
// 检测 value 是否以“不含通配符的匹配规则”结尾,并返回结果
return value.endsWith(pattern.substring(i + 1));
}
// "*" is in the middle
// 通配符 "*" 在匹配规则中间位置
else {
// 通过通配符将 pattern 分成两半,得到 prefix 和 suffix
String prefix = pattern.substring(0, i);
String suffix = pattern.substring(i + 1);
// 检测 value 是否以 prefix 开头,且以 suffix 结尾,并返回结果
return value.startsWith(prefix) && value.endsWith(suffix);
}
}
这两个方法分别对普通的匹配过程,以及”引用消费者参数“和通配符匹配等特性提供了支持。
总结
- 路由对象的初始化
- 路由链调用
- 单个路由的匹配逻辑