一、程序及函数
1.引导脚本ex6.m
%% Machine Learning Online Class
% Exercise 6 | Support Vector Machines
%
% Instructions
% -------------------------------------------------------------
%
% This file contains code that helps you get started on the
% exercise. You will need to complete the following functions:
%
% gaussianKernel.m
% dataset3Params.m
% processEmail.m
% emailFeatures.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear;
close all;
clc
%% =============== Part 1: Loading and Visualizing Data ================
% We start the exercise by first loading and visualizing the dataset.
% The following code will load the dataset into your environment and plot the data.
fprintf('Loading and Visualizing Data ...\n')
% Load from ex6data1:
% You will have X, y in your environment
load('ex6data1.mat');
% Plot training data
plotData(X, y);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ==================== Part 2: Training Linear SVM ====================
% The following code will train a ----linear SVM---- on the dataset and plot the
% decision boundary learned.
% Load from ex6data1:
% You will have X, y in your environment
load('ex6data1.mat');
fprintf('\nTraining Linear SVM ...\n')
% You should try to change the C value below and see how the decision
% boundary varies (e.g., try C = 1000)
% SVM里的C某种意义上相当于回归里的1/lambda
% C越大,代表SVM更倾向于将所有样本分得更正确(使J更小),使决策边界更right
C = 1;
model = svmTrain(X, y, C, @linearKernel, 1e-3, 20);
visualizeBoundaryLinear(X, y, model);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =============== Part 3: Implementing Gaussian Kernel ===============
% You will now implement the Gaussian kernel to use
% with the SVM. You should complete the code in gaussianKernel.m
%
fprintf('\nEvaluating the Gaussian Kernel ...\n')
x1 = [1 2 1];
x2 = [0 4 -1];
sigma = 2;
sim = gaussianKernel(x1, x2, sigma);
fprintf(['Gaussian Kernel between x1 = [1; 2; 1], x2 = [0; 4; -1], sigma = %f :' ...
'\n\t%f\n(for sigma = 2, this value should be about 0.324652)\n'], sigma, sim);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =============== Part 4: Visualizing Dataset 2 ================
% The following code will load the next dataset into your environment and plot the data.
fprintf('Loading and Visualizing Data ...\n')
% Load from ex6data2:
% You will have X, y in your environment
load('ex6data2.mat');
% Plot training data
plotData(X, y);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ========== Part 5: Training SVM with RBF Kernel (Dataset 2) ==========
% After you have implemented the kernel, we can now use it to train the
% SVM classifier.
%
fprintf('\nTraining SVM with RBF Kernel (this may take 1 to 2 minutes) ...\n');
% Load from ex6data2:
% You will have X, y in your environment
load('ex6data2.mat');
% SVM Parameters
C = 1; sigma = 0.1;
% We set the tolerance and max_passes lower here so that the code will run
% faster. However, in practice, you will want to run the training to
% convergence.
model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma));
visualizeBoundary(X, y, model);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =============== Part 6: Visualizing Dataset 3 ================
% The following code will load the next dataset into your environment and
% plot the data.
%
fprintf('Loading and Visualizing Data ...\n')
% Load from ex6data3:
% You will have X, y in your environment
load('ex6data3.mat');
% Plot training data
plotData(X, y);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ========== Part 7: Training SVM with RBF Kernel (Dataset 3) ==========
% This is a different dataset that you can use to experiment with. Try
% different values of C and sigma here.
% Load from ex6data3:
% You will have X, y in your environment
load('ex6data3.mat');
% Try different SVM Parameters here
[C, sigma, prediction_error, row, col] = dataset3Params(X, y, Xval, yval);
% Train the SVM
model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma));
visualizeBoundary(X, y, model);
fprintf('Program paused. Press enter to continue.\n');
pause;
2.gaussianKernel.m
该函数计算了两个样本之间的高斯核函数值。
function sim = gaussianKernel(x1, x2, sigma)
%RBFKERNEL returns a radial basis function kernel between x1 and x2
% sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
% and returns the value in sim
% 确保x1 x2是列向量
x1 = x1(:);
x2 = x2(:);
% You need to return the following variables correctly.
sim = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the similarity between x1
% and x2 computed using a Gaussian kernel with bandwidth sigma
% n是x1 x2的所含的特征属性个数
n = length(x1);
sim = exp(-1 * sum((x1(:) - x2(:)).^2) / (2 * sigma.^2));
% =============================================================
end
3.dataset3Params.m
该函数的功能找到最优的C和sigma值。
function [C, sigma, prediction_error, row, col] = dataset3Params(X, y, Xval, yval)
%DATASET3PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = DATASET3PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
% You need to return the following variables correctly.
% C = 1;
% sigma = 0.3;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% temp_predictions = svmPredict(temp_model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(temp_predictions ~= yval))
C_list = [0.01 0.03 0.1 0.3 1 3 10 30];
sigma_list = [0.01 0.03 0.1 0.3 1 3 10 30];
prediction_error = zeros(length(C_list),length(sigma_list));
for i = 1 : length(C_list)
for j = 1 : length(sigma_list)
% 用训练集训练SVM参数,得到最优的w和b
temp_model= svmTrain(X, y, C_list(i), @(x1, x2) gaussianKernel(x1, x2, sigma_list(j)));
% 再用交叉验证集计算使用当前w和b预测结果的准确率
temp_predictions = svmPredict(temp_model, Xval);
% 计算当前的预测误差
prediction_error(i,j) = mean(double(temp_predictions ~= yval));
end
end
% 找到预测误差最小值所在的行和列
[row,col] = find(prediction_error == min(min(prediction_error)));
% 得到最优的C和sigma的值
C = C_list(row);
sigma = sigma_list(col);
% =========================================================================
end
4.visualizeBoundary.m
该函数的功能是绘制SVM的决策边界。
function visualizeBoundary(X, y, model, varargin)
%VISUALIZEBOUNDARY plots a non-linear decision boundary learned by the SVM
% VISUALIZEBOUNDARYLINEAR(X, y, model) plots a linear decision
% boundary learned by the SVM and overlays the data on it
% Plot the training data on top of the boundary
plotData(X, y)
% Make classification predictions over a grid of values
x1plot = linspace(min(X(:,1)), max(X(:,1)), 100)';
x2plot = linspace(min(X(:,2)), max(X(:,2)), 100)';
[X1, X2] = meshgrid(x1plot, x2plot);
vals = zeros(size(X1));
for i = 1:size(X1, 2)
this_X = [X1(:, i), X2(:, i)];
vals(:, i) = svmPredict(model, this_X);
end
% Plot the SVM boundary
hold on
contour(X1, X2, vals, [0.5 0.5], 'b');
hold off;
end
其他函数都是Andrew Ng已经帮我们写好了的,相对不那么重要,就不贴上来了。
二、运行结果
1.The dicision boundary of SVM with linear kernel:
2.The dicision boundary of SVM with gaussian kernel:
3.The dicision boundary of SVM with gaussian kernel and the best C and sigma(relatively):