Cnblog-Latex数学公式使用测试

*默认不支持换行的数学公式

1.

\(a+b=c\)

$a+b=c$

2.

\[a+b=c\]

$$a+b=c$$

3.

$alpha$

$\alpha$

$pi$

$\pi$

4.

$\Gamma$

5.

$a<b<\beta\ll\Psi$

$a\equiv b$

$$\\equiv$$

$$a=b$$

$$a\notin b \ c\in d  $$

6

$\int$

$\iint$

$\iiint$

7.

$$C_{1} \qquad \int_{x} $$

$$\Sigma_{C_{i}}\quad \Psi$$

$$a_{i} \ b_{i}$$

8.

$$C_1+C_2$$

$$C_ {m,n} $$

$${C_{i^2}}^2 = a^2+b^{\int_{x}}$$

9.

$$e^{x^2} \neq e^{x^2}$$

$${sin\alpha}^2+{cos\beta}^2 \equiv 1$$

10.

$$\sqrt{x+y}= \sqrt{\Sigma_{i=1}^{n} x}$$

$\sqrt{a}$

$$a=b\cdot c \ a=b\dot c$$

10.

$$lim_{x \rightarrow 0} \frac {\sin x}{x}=1$$

11.

$$\overline{a} \quad \underline{m+n}$$

12.

$$\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}$$

13.

$$y'=3\widetilde a$$

14.

$$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}$$

15.

$$x\in \mathbb{R} x^2>=0$$

16.

$${n\choose m} \qquad {x\atop y+2} \quad ({x\atop y+2})$$

$$C_({x\atop y+2})$$

17.

$${\int_{0}^{\frac{\pi}{2}}}$$

$$\sum_{i=1}^{n}$$

$$\prod_ \epsilon$$

18.

$$1+\left(\frac {1}{1-x^2}\right)^3 \qquad 1+(\frac {1}{1-x^2})^2$$

19.

$$\left(\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}\right)= \Psi $$

20.

$$a=b$$

$$\begin{Bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{Bmatrix} \tag{1} $$

21.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) $$

22.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{2}$$

$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{1}$

23.

$$ \left[ \begin{matrix} 1 & 2 & \cdots & 4 \\ 7 & 6 & \cdots & 5 \\ \vdots & \vdots & \ddots & \vdots \\ 8 & 9 & \cdots & 0 \\ \end{matrix} \right] $$

24.

$$ \left[ \begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right] \tag{7} $$

25.

$$\sum_{i=1}^n a_i=0$$
$$f(x)=x^{x^x}$$

26.

$$\mbox{已知$a>0,$任意的$b\in \mathbb{R},a+b>0$的概率和$a$的关系$.$}$$

27.

$$

1=1

$$

$$1=1$$

28.

$$\sqrt[3]{x}$$

29.

$$f(x_1,x_x,\ldots,x_n) = x_1^2 + x_2^2 + \cdots + x_n^2 $$

30.

$$[f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right).]$$

31.

$$\left. \frac{du}{dx} \right|_{x=0}.$$

32.

$$\begin{eqnarray*}\cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\ & = & 2 \cos^2 \theta - 1.\end{eqnarray*}$$

代码:

1.

\(a+b=c\)

$a+b=c$

2.

\[a+b=c\]

$$a+b=c$$

3.

$alpha$

$\alpha$

$pi$

$\pi$

4.

$\Gamma$

 5.

$a<b<\beta\ll\Psi$

$a\equiv b$

$$\\equiv$$

$$a=b$$

$$a\notin b \ c\in d  $$

6

$\int$

$\iint$

$\iiint$

7.

$$C_{1} \qquad \int_{x} $$

$$\Sigma_{C_{i}}\quad \Psi$$

$$a_{i} \ b_{i}$$

8.

$$C_1+C_2$$

$$C_ {m,n} $$

$${C_{i^2}}^2 = a^2+b^{\int_{x}}$$

9.

$$e^{x^2} \neq e^{x^2}$$

$${sin\alpha}^2+{cos\beta}^2 \equiv 1$$

10.

$$\sqrt{x+y}= \sqrt{\Sigma_{i=1}^{n} x}$$

$\sqrt{a}$ 

$$a=b\cdot c \ a=b\dot c$$

10.

$$lim_{x \rightarrow 0} \frac {\sin x}{x}=1$$

11.

$$\overline{a} \quad \underline{m+n}$$

12.

$$\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}$$

13.

$$y'=3\widetilde a$$

14.

$$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}$$

15.

$$x\in \mathbb{R} x^2>=0$$

16.

$${n\choose m} \qquad {x\atop y+2} \quad ({x\atop y+2})$$

$$C_({x\atop y+2})$$

17.

$${\int_{0}^{\frac{\pi}{2}}}$$

$$\sum_{i=1}^{n}$$

$$\prod_ \epsilon$$

18.

$$1+\left(\frac {1}{1-x^2}\right)^3 \qquad 1+(\frac {1}{1-x^2})^2$$

19.

$$\left(\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}\right)= \Psi $$

20.

$$a=b$$

$$\begin{Bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{Bmatrix} \tag{1} $$

21.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) $$

22.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{2}$$

$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{1}$

23.

$$ \left[ \begin{matrix} 1 & 2 & \cdots & 4 \\ 7 & 6 & \cdots & 5 \\ \vdots & \vdots & \ddots & \vdots \\ 8 & 9 & \cdots & 0 \\ \end{matrix} \right] $$

24.

$$ \left[ \begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right] \tag{7} $$

25.

$$\sum_{i=1}^n a_i=0$$
$$f(x)=x^{x^x}$$ 26. $$\mbox{已知$a>0,$任意的$b\in \mathbb{R},a+b>0$的概率和$a$的关系$.$}$$ 27. $$ 1=1 $$ $$1=1$$ 28. $$\sqrt[3]{x}$$ 29. $$f(x_1,x_x,\ldots,x_n) = x_1^2 + x_2^2 + \cdots + x_n^2 $$ 30. $$[f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right).]$$ 31. $$\left. \frac{du}{dx} \right|_{x=0}.$$ 32. $$\begin{eqnarray*}\cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\ & = & 2 \cos^2 \theta - 1.\end{eqnarray*}$$

  

上一篇:C# WinForm下拉TreView


下一篇:UVa 127 - "Accordian" Patience POJ 1214 链表题解