力扣 - 剑指 Offer 06. 从尾到头打印链表.md

题目

剑指 Offer 06. 从尾到头打印链表

思路1(递归)

  • 首先先遍历整个脸表,计算出链表的长度(用于初始化数组)。然后进行递归,从链表头部递归到尾部,这期间什么都不做,直到递归到最后一个节点的时候开始返回,开始返回的同时吧当前节点的值加入到res数组

代码

class Solution {
int[] res;
int index = 0; public int[] reversePrint(ListNode head) {
// 先统计链表的总节点数量
int count = 0;
ListNode temp = head;
while (temp != null) {
count++;
temp = temp.next;
}
res = new int[count]; // 进行递归
help(head); // 输出结果
return res;
} public void help(ListNode node) {
if (node == null) {
return;
}
help(node.next);
res[index++] = node.val;
}
}

复杂度分析

  • 时间复杂度:\(O(N)\),遍历一遍链表所花费的时间
  • 空间复杂度:\(O(N)\),递归所需要的空间

思路2(栈)

  • 使用栈的先进后出FILO原则,顺序遍历链表,将链表的元素依次加入到栈中。接下来将栈的元素一个个pop弹出来放到res数组中即可(因为是先进先出,所以此时栈的最后一个元素要先弹出,因此可以实现从尾到头遍历)

代码

class Solution {
public int[] reversePrint(ListNode head) {
// 将链表的元素依次入栈
LinkedList<Integer> stack = new LinkedList<>();
while (head != null) {
stack.push(head.val);
head = head.next;
} int[] res = new int[stack.size()];
// 将栈元素弹出放到res中
int index = 0;
while (!stack.isEmpty()) {
res[index++] = stack.pop();
} return res;
}
}

复杂度分析

  • 时间复杂度:\(O(N)\)
  • 空间复杂度:\(O(N)\),辅助栈使用了\(O(N)\)的空间
上一篇:lcn 分布式事务协调者集群原理


下一篇:kvm下Windows激活方式小计