title: c++ 11 游记 1
keyword :c++ 11 decltype constexpr
作者:titer1 zhangyu
出处:www.drysaltery.com
联系:1307316一九六八(仅接受短信)
声明:本文採用下面协议进行授权: *转载-非商用-非衍生-保持署名|Creative Commons BY-NC-ND 3.0 。转载请注明作者及出处。
tips for image: http://7xjs3n.com1.z0.glb.clouddn.com
c++ 11 游记 1(decltype constexpr)
一. 结缘 decltype
上code
#include <iostream>
struct A {
double x;
};
const A* a = new A();
decltype( a->x ) x3; // type of x3 is double (declared type)
decltype((a->x)) x4 = x3; // type of x4 is const double& (lvalue expression)
template <class T, class U>
auto add(T t, U u) -> decltype(t + u); // return type depends on template parameters
int main()
{
int i = 33;
decltype(i) j = i*2;
std::cout << "i = " << i << ", "
<< "j = " << j << '\n';
auto f = [](int a, int b) -> int {
return a*b;
};
decltype(f) f2{f}; // the type of a lambda function is unique and unnamed
i = f(2, 2);
j = f2(3, 3);
std::cout << "i = " << i << ", "
<< "j = " << j << '\n';
}
初步心得
此论要点:
- 初步掌握四种情形,具体看代码
- 函数后置的返回类型
- 变量(无括号的)申明
- 变量(有括号的)申明
- 和Lamda表达式相关
-
- 须要注意的是。假设一个对象的名称加上括号,它成为左值表达式
- 他还是lamda表达式的好基友喔。
decltype is useful when declaring types that are difficult or impossible to declare using standard notation, like lambda-related types or types that depend on template parameters.
尝试难点
If expression is a function call which returns a prvalue of class type or is a comma expression whose right operand is such a function call, a temporary object is not introduced for that prvalue. The class type need not be complete or have an available destructor. This rule doesn’t apply to sub-expressions:in decltype(f(g())), g() must have a complete type, but f() need not.
debug情况
我试着改变lamda表达式中的參数。可是编译器提示我。不能通过,原因待查明
二. constexpr
首先了解字面值 LiteralType,经常使用语字符串
能够在编译时期被动地计算表达式的值
- constexpr 将编译期常量概念延伸至括用户自己定义常量以及常量函数,其值的不可改动性由编译器保证。因而constexpr 表达式是一般化的。受保证的常量表达式
比const 前置修饰的函数 的能力 更广
code from csdn
enum Flags { good=0, fail=1, bad=2, eof=4 };
constexpr int operator|(Flags f1, Flags f2)
{ return Flags(int(f1)|int(f2)); }
void f(Flags x)
{
switch (x) {
case bad: /* … */ break;
case eof: /* … */ break;
case bad|eof: /* … */ break;
default: /* … */ break;
}
}
constexpr int x1 = bad|eof; // ok
void f(Flags f3)
{
// 错误:由于f3不是常量,所以无法在编译时期计算这个表达式的结果值
constexpr int x2 = bad|f3;
int x3 = bad|f3; // ok。能够在执行时计算
}
code from cpp.com
#include <iostream>
#include <stdexcept>
// The C++11 constexpr functions use recursion rather than iteration
// (C++14 constexpr functions may use local variables and loops)
constexpr int factorial(int n)
{
return n <= 1 ? 1 : (n * factorial(n-1));
}
// literal class
class conststr {
const char * p;
std::size_t sz;
public:
template<std::size_t N>
constexpr conststr(const char(&a)[N]) : p(a), sz(N-1) {}
// constexpr functions signal errors by throwing exceptions
// in C++11, they must do so from the conditional operator ?:
constexpr char operator[](std::size_t n) const {
return n < sz ?
p[n] : throw std::out_of_range("");
}
constexpr std::size_t size() const { return sz; }
};
// C++11 constexpr functions had to put everything in a single return statement
// (C++14 doesn't have that requirement)
constexpr std::size_t countlower(conststr s, std::size_t n = 0,
std::size_t c = 0) {
return n == s.size() ? c :
s[n] >= 'a' && s[n] <= 'z' ?
countlower(s, n+1, c+1) :
countlower(s, n+1, c);
}
// output function that requires a compile-time constant, for testing
template<int n> struct constN {
constN() { std::cout << n << '\n'; }
};
int main()
{
std::cout << "4! = " ;
constN<factorial(4)> out1; // computed at compile time
volatile int k = 8; // disallow optimization using volatile
std::cout << k << "! = " << factorial(k) << '\n'; // computed at run time
std::cout << "Number of lowercase letters in \"Hello, world!\" is ";
constN<countlower("Hello, world!")> out2; // implicitly converted to conststr
}
心得
- 迭代函数的值 在编译期间计算得到!!
!!
!
- 还有就是下图,具体例如以下: