import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset,DataLoader
import h5py
import glob
import os
import json
from tqdm import tqdm
import sys
import open3d as o3d
写在前面,本人pointnet代码所在的目录结构
ShapeNet数据集简介
- 首先下载 shapenet 数据集:https://shapenet.cs.stanford.edu/ericyi/shapenetcore_partanno_segmentation_benchmark_v0.zip
- 下载完毕后,synsetoffset2category.txt 文件,表明了各点云类在哪个文件夹下
- 点云数据在 .txt文件中,部分内容如下:
- shapenet有16个大类,每个大类有一些小类。共有16个大类,50个小类。
'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43],
'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46],
'Mug': [36, 37], 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27],
'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40],
'Chair': [12, 13, 14, 15], 'Knife': [22, 23]
定义ShapeNet_DataSet
class ShapeNetDataSet(Dataset):
def __init__(self, root="./data/ShapeNet", npoints=2500, split="train", class_choice=None, normal_use=False):
'''
root:str type, dataset root directory. default: "./data/ShapeNet"
npoint:int type, sampling number of point. default: 2500
split:str type, segmentation of dataset. eg.(train, val, test). default: "train"
class_choice:list type, select to keep class. default: None
normal_use:boolean type, normal(法线) information whether to use. default: False
'''
self.root = root # 数据集路径
self.npoints = npoints # 采样点数
self.normal_use = normal_use # 是否使用法线信息
self.category = {} # 类别所对应文件夹
# shapenet有16个大类,每个大类有一些部件,
# 例如飞机 'Airplane': [0, 1, 2, 3] 其中标签为0 1 2 3 的四个小类都属于飞机这个大类
self.seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43],
'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46],
'Mug': [36, 37], 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27],
'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40],
'Chair': [12, 13, 14, 15], 'Knife': [22, 23]}
# 读取 类别所对应的文件夹信息,即该文件synsetoffset2category.txt
with open(self.root+"/synsetoffset2category.txt") as f:
for line in f.readlines():
cate,file = line.strip().split()
self.category[cate] = file
# print(self.category) # {'Airplane': '02691156', 'Bag': '02773838', 'Cap': '02954340', 'Car': '02958343', 'Chair': '03001627', 'Earphone': '03261776', 'Guitar': '03467517', 'Knife': '03624134', 'Lamp': '03636649', 'Laptop': '03642806', 'Motorbike': '03790512', 'Mug': '03797390', 'Pistol': '03948459', 'Rocket': '04099429', 'Skateboard': '04225987', 'Table': '04379243'}
# 将类别字符串与数字对应
self.category2id = {}
i = 0
for item in self.category:
self.category2id[item] = i
i = i + 1
# class_choice进行类别选择
if class_choice: # class_choice 是 list类型
for item in self.category:
if item not in class_choice: # 若 类别 不在class_choice中,则删除
self.category.pop(item)
# 存储类别对应的点云数据文件
self.datapath = [] # 存储形式:[ (类别, 数据路径), (类别, 数据路径), ... ]
# 遍历点云文件,进行存储
for item in self.category:
filesName = [f[:-4] for f in os.listdir(self.root+"/"+self.category[item])] # 把该类别文件夹下的所有文件遍历出来,之后对其进行判断(属于训练集、验证集、测试集、)
# 抓取部分数据(训练集、验证集、测试集)
if split=="train":
with open(self.root+"/"+"train_test_split"+"/"+"shuffled_train_file_list.json") as f:
filename = [f.split("/")[-1] for f in json.load(f)]
for file in filesName:
if file in filename: # 若该类别文件夹中的数据在训练集中,则存储
self.datapath.append((item, self.root+"/"+self.category[item]+"/"+file+".txt"))
elif split=="val":
with open(self.root+"/"+"train_test_split"+"/"+"shuffled_val_file_list.json") as f:
filename = [f.split("/")[-1] for f in json.load(f)]
for file in filesName:
if file in filename: # 若该类别文件夹中的数据在验证集中,则存储
self.datapath.append((item, self.root+"/"+self.category[item]+"/"+file+".txt"))
elif split=="test":
with open(self.root+"/"+"train_test_split"+"/"+"shuffled_test_file_list.json") as f:
filename = [f.split("/")[-1] for f in json.load(f)]
for file in filesName:
if file in filename: # 若该类别文件夹中的数据在测试集中,则存储
self.datapath.append((item, self.root+"/"+self.category[item]+"/"+file+".txt"))
def __getitem__(self, index):
'''
:return: 点云数据, 大类别, 每个点的语义(大类别中的小类别)
'''
cls = self.datapath[index][0] # 类别字符串
cls_index = self.category2id[cls] # 类被字符串所对应的数字
path = self.datapath[index][1] # 点云数据存储的路径
data = np.loadtxt(path) # 点云数据
point_data = None
if self.normal_use: # 是否使用法线信息
point_data = data[:, 0:-1]
else:
point_data = data[:, 0:3]
seg = data[:, -1] # 语义信息
# 对数据进行重新采样
choice = np.random.choice(len(seg), self.npoints)
point_data = point_data[choice, :]
seg = seg[choice]
return point_data, cls_index, seg
def __len__(self):
return len(self.datapath)
- 测试一下
ShapeNetDataSet
类是否定义成功
dataset = ShapeNetDataSet(normal_use=True)
dataset
输出:
<__main__.ShapeNetDataSet at 0x1449258b5e0>
dataset[1]
输出:
(array([[ 0.04032, -0.04601, -0.2194 , 0.8508 , 0.5099 , 0.1266 ],
[ 0.28303, -0.01156, 0.01564, 0.1708 , 0.8002 , 0.5749 ],
[ 0.28908, -0.02916, 0.0262 , 0.04791, 0.09224, 0.9946 ],
...,
[ 0.12313, -0.06889, -0.12327, 0.6052 , -0.3931 , -0.6923 ],
[-0.17983, -0.04519, -0.02602, -0.07472, -0.4551 , -0.8873 ],
[ 0.03092, -0.05983, 0.05344, 0.7298 , -0.669 , -0.1407 ]]),
0,
array([3., 0., 0., ..., 3., 0., 1.]))
S3DIS数据集简介
-
S3DIS数据集下载:
-
txt格式文件介绍:
- 下载完毕后,有6个文件夹(Area_1、…、Area_6)
- 简介如下:
-
数据集中有几个问题:
- Stanford3dDataset_v1.2版本,Area_5\office_19\Annotations\ceiling_1.txt 第323474行
- Stanford3dDataset_v1.2_Aligned_Version版本,Area_5\hallway_6\Annotations\ceiling_1.txt 第180389行
-
hdf5格式文件介绍:
- 有 0-23 编号 .h5文件(共24个文件)
-
一个 .h5 文件有
data
键 和label
键- 0-22编号文件:
data.shape = (1000, 4096, 9)
、label.shape = (1000, 4096)
- 23编号文件:
data.shape = (585, 4096, 9)
、label.shape = (585, 4096)
- data最后一维是9,表示:XYZRGBX’Y’Z’ (X’:所属房间中的点 归一化坐标)
- 一共加起来,共 23585 行数据,正好对应
room_filelist.txt
文件中的行数 - 那么,
data[i, :, :]
数据对应room_filelist.txt
的一行数据,即:(画图展示)
- 0-22编号文件:
注意
- 在训练时,使用 S3DISDataSetTxt 或 S3DISDataSetH5 类声明train_dataset,因为在训练时,使用一个room中的部分场景进行训练。
- 在测试时,使用 S3DISWholeSceneDataSet 类声明test_dataset,因为在测试时,使用一个room进行测试,不再进行分割场景。
DATA_PATH = './Pointnet_Pointnet2_pytorch-master/data/s3dis/Stanford3dDataset_v1.2_Aligned_Version' # 数据集所在目录
BASE_DIR = "./Pointnet_Pointnet2_pytorch-master/data_utils"
ROOT_DIR = os.path.dirname(BASE_DIR) # "./Pointnet_Pointnet2_pytorch-master"
classes = [i.strip() for i in open(BASE_DIR+"/meta/class_names.txt")] # ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter']
classes2label = {classes[i]:i for i in range(len(classes))} # {'ceiling': 0, 'floor': 1, 'wall': 2, 'beam': 3, 'column': 4, 'window': 5, 'door': 6, 'table': 7, 'chair': 8, 'sofa': 9, 'bookcase': 10, 'board': 11, 'clutter': 12}
classes2color = {'ceiling':[0,255,0],'floor':[0,0,255],'wall':[0,255,255],'beam':[255,255,0],
'column':[255,0,255],'window':[100,100,255],'door':[200,200,100],'table':[170,120,200],
'chair':[255,0,0],'sofa':[200,100,100],'bookcase':[10,200,100],'board':[200,200,200],'clutter':[50,50,50]}
easy_view_labels = [7,8,9,10,11,1] # 点云进行可视化时,容易观察到的类别
label2color = { classes2label[cls]:classes2color[cls] for cls in classes } # {0: [0, 255, 0],1: [0, 0, 255],2: [0, 255, 255],3: [255, 255, 0]4: [255, 0, 255],5: [100, 100, 255],6: [200, 200, 100],7: [170, 120, 200],8: [255, 0, 0],9: [200, 100, 100],10: [10, 200, 100],11: [200, 200, 200],12: [50, 50, 50]}
txt格式
- 在定义DataSet之前,需将S3DIS数据打上标签值,因为下载原始数据,只有 XYZRGB 值,没有 label 值
# 将原始数据打上label
def collect_point_label(anno_path, out_filename, file_format=".txt"):
'''
把原始数据集转换为 data_label 文件(每行:XYZRGBL,L:label)
anno_path:annotations的路径。例如:Area_1/office_2/Annotations/
out_filename:保存文件(data_label)的路径
file_format:保存文件的格式, 只有两种格式:.txt 或 .npy
return: None
github源代码中注释如下:
Note: the points are shifted before save, the most negative point is now at origin.
注意:这些点在保存之前被移动,现在最负的点在原点。
'''
points_list = []
anno_files = [anno_path+"/"+i for i in os.listdir(anno_path) if i.endswith(".txt")] # 把 Annotations 文件夹下,以.txt结尾的文件取出
for file in anno_files:
# print(file) # ./Pointnet_Pointnet2_pytorch-master/data/s3dis/Stanford3dDataset_v1.2_Aligned_Version/Area_1/conferenceRoom_1/Annotations/beam_1.txt
cls = os.path.basename(file).split("_")[0] # beam
if cls == "stairs": # 有些 Annotations 文件夹下,有 stairs 类别,例如:Area_1/hallway_8/Annotations
cls = "clutter"
points = np.loadtxt(file, encoding="utf8") # 加载点云数据(XYZRGB)
labels = np.ones([points.shape[0], 1])*classes2label[cls] # L:label
points_list.append(np.concatenate([points, labels], 1)) # np.concatenate((a1, a2, ...), axis)。axis:0 将a1与a2行连接;1 将a1与a2列连接
data_label = np.concatenate(points_list, 0) # 将 points_list 中的数据,全部进行 行连接
xyz_min = np.min(data_label[:,0:3], axis=0) # 为什么这样?在该方法定义处,有解释
data_label[:, 0:3] = data_label[:, 0:3] - xyz_min
# 保存data_label (PS:在这我个人比较喜欢使用 .txt格式保存,因为 .npy格式没有使用过)
if file_format==".txt":
with open(out_filename, "w") as f:
for i in data_label: # 遍历 data_label 每行
f.write("%f %f %f %d %d %d %d\n" % (i[0], i[1], i[2], i[3], i[4], i[5], i[6]))
elif file_format==".npy":
np.save(out_filename, data_label)
else:
print('ERROR!! Unknown file format: %s, please use .txt or .npy.' % (file_format) )
exit()
# 遍历 Annotations 文件夹下的 点云数据(txt格式), 然后调用 collect_point_label() 方法
anno_paths = []
with open(BASE_DIR+"/meta/anno_paths.txt") as f:
lines = f.readlines()
for line in lines:
l = line.strip()
anno_paths.append(l) # ['Area_1/conferenceRoom_1/Annotations']
anno_paths = [os.path.join(DATA_PATH, p) for p in anno_paths] # ['./Pointnet_Pointnet2_pytorch-master/data/s3dis/Stanford3dDataset_v1.2_Aligned_Version\\Area_1/conferenceRoom_1/Annotations']
output_folder = os.path.join(ROOT_DIR, 'data/s3dis/alter_s3dis_my') # 原始数据修改后,保存的文件夹。'./Pointnet_Pointnet2_pytorch-master\\data/s3dis/alter_s3dis_my'
if not os.path.exists(output_folder): # 若不存在 ./Pointnet_Pointnet2_pytorch-master\\data/stanford_indoor3d' 文件夹,则创建
os.mkdir(output_folder)
for anno_path in anno_paths:
'''
windows下,需要 .replace("\\", "/"),否则使用 anno_path.split("/") 后,会产生 ['.', 'Pointnet_Pointnet2_pytorch-master', 'data', 's3dis', 'Stanford3dDataset_v1.2_Aligned_Version\\Area_1', 'conferenceRoom_1', 'Annotations']
'''
anno_path = anno_path.replace("\\", "/")
print(anno_path) # ./Pointnet_Pointnet2_pytorch-master/data/s3dis/Stanford3dDataset_v1.2_Aligned_Version/Area_1/conferenceRoom_1/Annotations
elements = anno_path.split("/") # ['.', 'Pointnet_Pointnet2_pytorch-master', 'data', 's3dis', 'Stanford3dDataset_v1.2_Aligned_Version', 'Area_1', 'conferenceRoom_1', 'Annotations']
out_filename = elements[-3]+"_"+elements[-2]+".txt" # 保存的文件,Area_1_hallway_1.txt
out_filename = output_folder + "/" + out_filename # 保存文件的完整路径。./Pointnet_Pointnet2_pytorch-master\\data/s3dis/alter_s3dis_my/Area_1_hallway_1.txt
collect_point_label(anno_path, out_filename, ".txt")
- DataSet:读取txt格式
# txt形式
class S3DISDataSetTxt(Dataset):
def __init__(self, root="./Pointnet_Pointnet2_pytorch-master/data/s3dis/alter_s3dis_my", split="train",
num_point=4096, test_area=5, block_size=1.0, sample_rate=1.0, transform=None):
'''
root:数据集所在路径
split:训练集 或 测试集("train"、"test")
num_point:采样点数
test_area:测试集、Area_5。也可以取其他数字,论文中取的是5
block_size:将采样房间变为block_size * block_size的大小,单位:m
sample_rate:采样率,1表示全采样
transform:目前不知道,后续补充
'''
self.num_point = num_point # 采样点数
self.block_size = block_size # 将采样房间变为block_size * block_size的大小,单位:m
self.transform = transform
self.room_points, self.room_labels = [], [] # 点云数据,标签值(指:一个点云文件中,每行数据加上label)
self.room_coord_min, self.room_coord_max = [], [] # 每个room(点云文件)的各个维度(X、Y、Z)最小值,最大值
num_point_all = [] # 各room中,点的总数
labelweights = np.zeros(13) # array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
rooms = sorted(os.listdir(root)) # 数据集文件,['Area_1_WC_1.txt','Area_1_conferenceRoom_1.txt', ..., 'Area_6_pantry_1.txt']
rooms = [room for room in rooms if "Area_" in room]
# 数据集分割
# room.split("_")[1]:即 'Area_1_WC_1.txt'.split("_")[1]
if split=="train":
rooms_split = [room for room in rooms if int(room.split("_")[1]) != test_area]
else:
rooms_split = [room for room in rooms if int(room.split("_")[1]) == test_area]
for room_name in tqdm(rooms_split, total=len(rooms_split)):
room_path = os.path.join(root, room_name) # 获取数据集文件, ./Pointnet_Pointnet2_pytorch-master/data/s3dis/alter_s3dis_my\Area_1_WC_1.txt
room_data = np.loadtxt(room_path) # 加载数据集,XYZRGBL,N*7
points, labels = room_data[:, 0:6], room_data[:, 6]
tmp,_ = np.histogram(labels, range(14))
labelweights = labelweights + tmp # 统计全部room中,各点类别的数量
coord_min, coord_max = np.min(points, 0)[:3], np.max(points, 0)[:3]
self.room_points.append(points), self.room_labels.append(labels)
self.room_coord_min.append(coord_min), self.room_coord_max.append(coord_max)
num_point_all.append(labels.size)
labelweights = labelweights.astype(np.float32)
labelweights = labelweights / np.sum(labelweights) # 各类别点 占 总点数的比例
# 最大值 / labelweights,作用:将类别数量出现最少的,赋予更多的权重
# 开3次方:为了使得权重变平,使得它们不易变化
self.labelweights = np.power(np.max(labelweights)/labelweights, 1/3.0)
sample_prob = num_point_all / np.sum(num_point_all) # 每个room的点云数 占 总点云数 的比例
num_iter = int( sample_rate * np.sum(num_point_all) / num_point ) # sample_rate * 所有room的总点数 / 采样点数。总共需要迭代 num_iter 次,才能把所有room采样完
room_idxs = []
for index in range(len(rooms_split)):
# sample_prob[index]:对应room的点云数占总点云数的比例;num_iter:总迭代次数
room_idxs.extend([index] * int(round(sample_prob[index] * num_iter))) # sample_prob[index] * num_iter:采样第index个room,需要的次数
self.room_idxs = np.array(room_idxs)
print("Totally {} samples in {} set.".format(len(self.room_idxs), split))
def __getitem__(self, index):
room_idx = self.room_idxs[index]
points = self.room_points[room_idx] # N × 6
labels = self.room_labels[room_idx] # N × 1
N = points.shape[0] # 点的数量
while(True):
center = points[np.random.choice(N), :3] # 随机指定一个点作为block中心
# 1m × 1m 范围
block_min = center - [self.block_size/2.0, self.block_size/2.0, 0]
block_max = center + [self.block_size/2.0, self.block_size/2.0, 0]
'''
np.where(condition, a, b):满足condition,填充a,否则填充b
若没写a,b,只有np.where(condition),则返回:(array1, array2),array1满足条件的行,array2:满足条件的列
'''
# 选定在block范围内点的索引
point_index = np.where((points[:, 0] >= block_min[0]) & (points[:, 0] <= block_max[0]) & (points[:, 1] >= block_min[1]) & (points[:, 1] <= block_max[1]))[0]
if point_index.shape[0]>1024:
break
# 采样
if point_index.shape[0] >= self.num_point:
sample_point_index = np.random.choice(point_index, self.num_point, replace=False)
else:
sample_point_index = np.random.choice(point_index, self.num_point, replace=True)
sample_points = points[sample_point_index, :] # num_point × 6
# 归一化
current_points = np.zeros([self.num_point, 9]) # num_point × 9,XYZRGBX'Y'Z',X':X归一化后的坐标
current_points[:, 6] = sample_points[:, 0] / self.room_coord_max[room_idx][0]
current_points[:, 7] = sample_points[:, 1] / self.room_coord_max[room_idx][1]
current_points[:, 8] = sample_points[:, 2] / self.room_coord_max[room_idx][2]
sample_points[:, 0] = sample_points[:, 0] - center[0]
sample_points[:, 1] = sample_points[:, 1] - center[1]
sample_points[:, 3:6] = sample_points[:, 3:6] / 255
current_points[:, 0:6] = sample_points
current_labels = labels[sample_point_index]
if self.transform:
current_points, current_labels = self.transform(current_points, current_labels)
return current_points, current_labels
def __len__(self):
return len(self.room_idxs)
hdf5格式
-
由于官方给出的 hdf5 数据,我不会用。
-
于是,我就把 官方txt格式文件中每行打上label标签后的txt文件(上述代码我已写明转换代码以及注释),转换为 hdf5格式
-
官方txt文件每行 打上label后所在路径:
D:\AnacondaCode\04Deep_Learning\03三维点云\Pointnet_Pointnet2_pytorch-master\data\s3dis\alter_s3dis_my
-
把上述目录下的文件,转换为 .hdf5格式,放在:
D:\AnacondaCode\04Deep_Learning\03三维点云\data
下 -
转换为hdf5格式
def convert_txt_to_h5(source = r"D:\AnacondaCode\04Deep_Learning\03三维点云\Pointnet_Pointnet2_pytorch-master\data\s3dis\alter_s3dis_my",
target = r"D:\AnacondaCode\04Deep_Learning\03三维点云\data\S3DIS_hdf5"):
for file in glob.glob(source+"/*.txt"):
name = file.replace('\\', '/').split("/")[-1][:-4]
data = np.loadtxt(file)
points = data[:, :6]
labels = data[:, 6]
f = h5py.File(target+"/"+name+".h5", "w")
f.create_dataset("data", data=points)
f.create_dataset("label", data=labels)
f.close()
convert_txt_to_h5()
- DataSet:读取hdf5格式
# hdf5形式
class S3DISDataSetH5(Dataset):
def __init__(self, root="./data/S3DIS_hdf5", split="train",
num_point=4096, test_area=5, block_size=1.0, sample_rate=1.0, transform=None):
'''
root:数据集所在路径
split:训练集 或 测试集("train"、"test")
num_point:采样点数
test_area:测试集、Area_5。也可以取其他数字,论文中取的是5
block_size:将采样房间变为block_size * block_size的大小,单位:m
sample_rate:采样率,1表示全采样
transform:目前不知道,后续补充
'''
self.num_point = num_point # 采样点数
self.block_size = block_size # 将采样房间变为block_size * block_size的大小,单位:m
self.transform = transform
self.room_points, self.room_labels = [], [] # 点云数据,标签值(指:一个点云文件中,每行数据加上label)
self.room_coord_min, self.room_coord_max = [], [] # 每个room(点云文件)的各个维度(X、Y、Z)最小值,最大值
num_point_all = [] # 各room中,点的总数
labelweights = np.zeros(13) # array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
rooms = [os.path.basename(file) for file in glob.glob(root+"/*.h5")] # 数据集文件,['Area_1_conferenceRoom_1.h5', 'Area_1_conferenceRoom_2.h5', ..., 'Area_6_pantry_1.h5']
rooms = [room for room in rooms if "Area_" in room]
# 数据集分割
# room.split("_")[1]:即 'Area_1_WC_1.h5'.split("_")[1]
if split=="train":
rooms_split = [room for room in rooms if int(room.split("_")[1]) != test_area]
else:
rooms_split = [room for room in rooms if int(room.split("_")[1]) == test_area]
for room_name in tqdm(rooms_split, total=len(rooms_split)):
room_path = os.path.join(root, room_name) # 获取数据集文件, ./data/S3DIS_hdf5\Area_1_WC_1.h5
# 读取h5文件
f = h5py.File(room_path)
points = np.array(f["data"]) # [N, 6] XYZRGB
labels = np.array(f["label"]) # [N,] L
f.close()
tmp,_ = np.histogram(labels, range(14))
labelweights = labelweights + tmp # 统计全部room中,各点类别的数量
coord_min, coord_max = np.min(points, 0)[:3], np.max(points, 0)[:3]
self.room_points.append(points), self.room_labels.append(labels)
self.room_coord_min.append(coord_min), self.room_coord_max.append(coord_max)
num_point_all.append(labels.size)
labelweights = labelweights.astype(np.float32)
labelweights = labelweights / np.sum(labelweights) # 各类别点 占 总点数的比例
# 最大值 / labelweights,作用:将类别数量出现最少的,赋予更多的权重
# 开3次方:为了使得权重变平,使得它们不易变化
self.labelweights = np.power(np.max(labelweights)/labelweights, 1/3.0)
sample_prob = num_point_all / np.sum(num_point_all) # 各个room的点云数 占 总点云数 的比例
num_iter = int( sample_rate * np.sum(num_point_all) / num_point ) # sample_rate * 所有room的总点数 / 采样点数。总共需要迭代 num_iter 次,才能把所有room采样完
room_idxs = []
for index in range(len(rooms_split)):
# sample_prob[index]:对应room的点云数占总点云数的比例;num_iter:总迭代次数
room_idxs.extend([index] * int(round(sample_prob[index] * num_iter))) # sample_prob[index] * num_iter:采样第index个room,需要的次数
self.room_idxs = np.array(room_idxs)
print("Totally {} samples in {} set.".format(len(self.room_idxs), split)) # len(self.room_idxs):47576
# len(room_idxs) == num_iter
def __getitem__(self, index):
room_idx = self.room_idxs[index]
points = self.room_points[room_idx] # N × 6
labels = self.room_labels[room_idx] # N × 1
N = points.shape[0] # 点的数量
while(True):
center = points[np.random.choice(N), :3] # 随机指定一个点作为block中心
# 1m × 1m 范围
block_min = center - [self.block_size/2.0, self.block_size/2.0, 0]
block_max = center + [self.block_size/2.0, self.block_size/2.0, 0]
'''
np.where(condition, a, b):满足condition,填充a,否则填充b
若没写a,b,只有np.where(condition),则返回:(array1, array2),array1满足条件的行,array2:满足条件的列
'''
# 选定在block范围内点的索引
point_index = np.where((points[:, 0] >= block_min[0]) & (points[:, 0] <= block_max[0]) & (points[:, 1] >= block_min[1]) & (points[:, 1] <= block_max[1]))[0]
if point_index.shape[0]>1024:
break
# 采样
if point_index.shape[0] >= self.num_point:
sample_point_index = np.random.choice(point_index, self.num_point, replace=False)
else:
sample_point_index = np.random.choice(point_index, self.num_point, replace=True)
sample_points = points[sample_point_index, :] # num_point × 6
# 归一化
current_points = np.zeros([self.num_point, 9]) # num_point × 9,XYZRGBX'Y'Z',X':X归一化后的坐标
current_points[:, 6] = sample_points[:, 0] / self.room_coord_max[room_idx][0]
current_points[:, 7] = sample_points[:, 1] / self.room_coord_max[room_idx][1]
current_points[:, 8] = sample_points[:, 2] / self.room_coord_max[room_idx][2]
sample_points[:, 0] = sample_points[:, 0] - center[0]
sample_points[:, 1] = sample_points[:, 1] - center[1]
sample_points[:, 3:6] = sample_points[:, 3:6] / 255
current_points[:, 0:6] = sample_points
current_labels = labels[sample_point_index]
if self.transform:
current_points, current_labels = self.transform(current_points, current_labels)
return current_points, current_labels
def __len__(self):
return len(self.room_idxs)
- 使用整个场景
- 以下代码借鉴了源码,与源码有较大改动
class S3DISWholeSceneDataSetH5(Dataset):
def __init__(self, root="./data/S3DIS_hdf5", block_points=4096, split='test', test_area=5, block_size=1.0, padding=0.005):
self.root = root # 数据集路径
self.block_points = block_points # 对room进行分割的一部分中,采样的点数
self.block_size = block_size # 分割部分的大小:block_size × block_size
self.padding = padding # 每个分割部分,都与相邻分割部分有重叠
self.room_points_num = [] # 每个room的点数
self.room_points = [] # 每个room中每个点的数据(XYZRGB)
self.room_labels = [] # 每个room中每个点的标签(L)
self.room_coord_min, self.room_coord_max = [], [] # 每个room中XYZ坐标的最小值与最大值
assert split in ["train", "test"] # assert True:正常执行程序 assert False:触发异常,即报错
rooms = [os.path.basename(f) for f in glob.glob(root+"/*.h5")] # ['Area_1_conferenceRoom_1.h5', 'Area_1_conferenceRoom_2.h5', ...]
if split == "train":
self.rooms = [room for room in rooms if int(room.split("_")[1]) != test_area]
else:
self.rooms = [room for room in rooms if int(room.split("_")[1]) == test_area]
labelweights = np.zeros(13) # 标签值权重
for room in tqdm(self.rooms, total=len(self.rooms)):
f = h5py.File(root+"/"+room)
points = np.array(f["data"]) # [N, 6] XYZRGB
labels = np.array(f["label"]) # [N, ] L
f.close()
temp, _ = np.histogram(labels, range(14)) # 各个标签值出现的次数
labelweights = labelweights + temp
self.room_points.append(points)
self.room_labels.append(labels)
coord_min, coord_max = np.min(points, axis=0)[0:3], np.max(points, axis=0)[0:3]
self.room_coord_min.append(coord_min), self.room_coord_max.append(coord_max)
self.room_points_num.append(labels.shape[0])
labelweights = labelweights / np.sum(labelweights)
self.labelweights = np.power( np.max(labelweights) / labelweights, 1/3.0 )
def __getitem__(self, index):
points = self.room_points[index] # 第index个room的每个点数据 (XYZRGB)
labels = self.room_labels[index].astype(np.int64) # 第index个room的每个点标签(L)
coord_min, coord_max = self.room_coord_min[index], self.room_coord_max[index]
# points_room:一个room中每个格子的点数据(XYZRGBX'Y'Z') labels_room:一个room中每个格子的点标签 (L)
points_room, labels_room = [], []
# 把XY轴看成一个平面,类似于YOLOv1算法,对该平面进行划分,但是每个格子与其相邻的格子有重叠的部分
# 每个格子正常大小为1m×1m,但是需要有重叠部分,所有需要对格子的范围进行适当的扩大
grid_x = int(np.ceil((coord_max[0] - coord_min[0]) / self.block_size)) # X轴被划分为 grid_x 个格子
grid_y = int(np.ceil((coord_max[1] - coord_min[1]) / self.block_size)) # Y轴被划分为 grid_x 个格子
for row in range(grid_y): # 行
for col in range(grid_x): # 列
x_min = col - self.padding
y_min = row - self.padding
x_max = (col + 1) + self.padding
y_max = (row + 1) + self.padding
points_index = np.where( (points[:,0]>x_min) & (points[:,0]<x_max) & (points[:,1]>y_min) & (points[:,1]<y_max) )[0]
if points_index.shape[0] == 0:
continue
# 所采样的点数必须为 block_points 的倍数,不然后续无法进行reshape
# 若一个格子内的点数 < block_points,则重复采样缺少的点数
multiple = int(np.ceil(points_index.shape[0] / self.block_points))
if points_index.shape[0] < self.block_points:
points_index_repeat = np.random.choice(points_index, self.block_points - points_index.shape[0], replace=True)
else:
points_index_repeat = np.random.choice(points_index, multiple * self.block_points - points_index.shape[0], replace=False)
points_index = np.concatenate([points_index, points_index_repeat], axis=0)
np.random.shuffle(points_index)
# 一个格子中的 点云数据 与 点云标签
points_grid = points[points_index]
labels_grid = labels[points_index]
# XYZ坐标 归一化
# 源码中:把一个格子中的XY坐标,都减去了该格子的中心点
# 在本人代码中,无需减去(本人对减去和不减去进行了实验)中心点,得到了不能减去的结论
# 原因如下;
# 若每个格子的XY坐标都减去该格子的中心点,虽然该格子中的点相对位置不变
# 但是,该格子的点与相邻格子的点 位置会有变化
norm_xyz = np.zeros((points_index.shape[0], 3))
norm_xyz[:, 0] = points_grid[:, 0] / coord_max[0]
norm_xyz[:, 1] = points_grid[:, 1] / coord_max[1]
norm_xyz[:, 2] = points_grid[:, 2] / coord_max[2]
points_grid[:, 3:6] = points_grid[:, 3:6] / 255
points_grid = np.concatenate([points_grid, norm_xyz], axis=1) # [N, 9]
points_room.append(points_grid)
labels_room.append(labels_grid)
points_room = np.concatenate(points_room)
labels_room = np.concatenate(labels_room)
points_room = points_room.reshape(-1, self.block_points, points_room.shape[1]) # [B, N, 9]
labels_room = labels_room.reshape(-1, self.block_points) # [B, N]
return points_room, labels_room
def __len__(self):
return len(self.room_points_num)
定义T-Net
class STN3d(nn.Module):
def __init__(self, channel):
super().__init__()
self.conv1 = nn.Conv1d(channel, 64, 1)
self.conv2 = nn.Conv1d(64, 128, 1)
self.conv3 = nn.Conv1d(128, 1024, 1)
self.fc1 = nn.Linear(1024, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 9)
self.bn1 = nn.BatchNorm1d(64)
self.bn2 = nn.BatchNorm1d(128)
self.bn3 = nn.BatchNorm1d(1024)
self.bn4 = nn.BatchNorm1d(512)
self.bn5 = nn.BatchNorm1d(256)
def forward(self, x):
batch_size = x.shape[0]
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = F.relu(self.bn3(self.conv3(x))) # x.shape:[32, 1024, 2500]
x = torch.max(x,-1, keepdim=True)[0] # x.shape:[32, 1024, 1], keepdim=True,保持output后的维度与input维度一样,例如:input是三维,则output也是三维
x = x.view(-1,1024)
x = F.relu(self.bn4(self.fc1(x)))
x = F.relu(self.bn5(self.fc2(x)))
x = self.fc3(x)
# 不知道为什么要写这个
iden = torch.eye(3).view(1, 9).repeat(batch_size, 1)
if x.is_cuda:
iden = iden.cuda()
x = x + iden
x = x.view(-1, 3, 3)
return x
class STNkd(nn.Module):
def __init__(self, channel=64):
super().__init__()
self.conv1 = nn.Conv1d(channel, 64, 1)
self.conv2 = nn.Conv1d(64, 128, 1)
self.conv3 = nn.Conv1d(128, 1024, 1)
self.fc1 = nn.Linear(1024, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, channel*channel)
self.bn1 = nn.BatchNorm1d(64)
self.bn2 = nn.BatchNorm1d(128)
self.bn3 = nn.BatchNorm1d(1024)
self.bn4 = nn.BatchNorm1d(512)
self.bn5 = nn.BatchNorm1d(256)
self.channel = channel
def forward(self, x):
batch_size = x.shape[0]
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = F.relu(self.bn3(self.conv3(x))) # x.shape:[32, 1024, 2500]
x = torch.max(x,-1, keepdim=True)[0] # x.shape:[32, 1024, 1], keepdim=True,保持output后的维度与input维度一样,例如:input是三维,则output也是三维
x = x.view(-1,1024)
x = F.relu(self.bn4(self.fc1(x)))
x = F.relu(self.bn5(self.fc2(x)))
x = self.fc3(x)
# 不知道为什么要写这个
iden = torch.eye(self.channel).view(1, self.channel * self.channel).repeat(batch_size, 1)
if x.is_cuda:
iden = iden.cuda()
x = x + iden
x = x.view(-1, self.channel, self.channel)
return x
定义PointNet主体部分
class PointNetEncoder(nn.Module):
def __init__(self, global_feature=True, feature_transform=False, channel=3):
'''
global_feature:True,则进行分类
feature_transform:True,则进行分割
'''
super().__init__()
self.stn = STN3d(channel) # 空间转换网络
self.conv1 = nn.Conv1d(channel, 64, 1)
self.conv2 = nn.Conv1d(64, 128, 1)
self.conv3 = nn.Conv1d(128, 1024, 1)
self.bn1 = nn.BatchNorm1d(64)
self.bn2 = nn.BatchNorm1d(128)
self.bn3 = nn.BatchNorm1d(1024)
self.global_feature = global_feature # 全局特征
self.feature_transform = feature_transform # 是否对高维特征进行旋转变换标定
if self.feature_transform:
self.fstn = STNkd(64)
def forward(self, x): # x.shape:[32, 3, 2500]
B, D, N = x.shape # B:batch_size,D:dimension,N:number(点的数量)
stn3 = self.stn(x) # stn3.shape:[32, 3, 3]
x = x.transpose(2,1) # x.shape:[32, 2500, 3]
if D>3: # 若 维度 > 3
feature = x[:, :, 3:]
x = x[:, :, :3]
x = torch.bmm(x, stn3) # x.shape:[32, 2500, 3] stn3:[32, 3, 3]。 使用torch.bmm(t1, t2),t1,t2必须都为3维,且第一维必须一样,其余两维按照矩阵乘法进行
if D>3:
x = torch.cat([x, feature], dim=2)
x = x.transpose(2,1) # x.shape:[32, 3, 2500]
x = F.relu(self.bn1(self.conv1(x))) # x.shape:[32, 64, 2500]
if self.feature_transform: # 是否对高维特征进行旋转
stn64 = self.fstn(x)
x = x.transpose(2,1) # x.shape:[32, 2500, 64]
x = torch.bmm(x, stn64)
x = x.transpose(2,1) # x.shape:[32, 64, 2500]
else:
stn64 = None
point_feature = x # 旋转过后的特征,point_feature.shape:[32, 64, 2500]
x = F.relu(self.bn2(self.conv2(x))) # x.shape:[32, 128, 2500]
x = self.bn3(self.conv3(x)) # x.shape:[32, 1024, 2500]
x = torch.max(x, dim=2)[0] # x.shape:[32, 1024]
x = x.view(-1, 1024) # x.shape:[32, 1024]
if self.global_feature:
return x, stn3, stn64 # 返回:global feature, input transform, feature transform
else:
x = x.view(-1, 1024, 1).repeat(1, 1, N) # x.shape:[32, 1024, 2500]
compoud = torch.cat([point_feature, x], dim=1) # compoud.shape:[32, 1088, 2500]
return compoud, stn3, stn64 # 对应点云分割算法
def feature_transform_reguliarzer(trans):
d = trans.shape[1]
I = torch.eye(d)[None, :, :] # [None, :, :]:None是为了增加1个维度,也可使用 torch.eye(d).unsqeeze(0)
if trans.is_cuda:
I = I.cuda()
loss = torch.mean(torch.norm(torch.bmm(trans, trans.transpose(2, 1)), dim=(1,2)))
return loss
语义分割
class Semantic_Segmentation(nn.Module):
def __init__(self, num_class): # num_class:类别个数。S3DIS有13个类别
super().__init__()
self.num_class = num_class
self.point_encoder = PointNetEncoder(False, True, 9)
self.conv1 = nn.Conv1d(1088, 512, 1)
self.conv2 = nn.Conv1d(512, 256, 1)
self.conv3 = nn.Conv1d(256, 128, 1)
self.conv4 = nn.Conv1d(128, self.num_class, 1)
self.bn1 = nn.BatchNorm1d(512)
self.bn2 = nn.BatchNorm1d(256)
self.bn3 = nn.BatchNorm1d(128)
def forward(self, x):
batch_size = x.shape[0] # x.shape:[32, 9, 2500]
N = x.shape[2]
x, stn3, stn64 = self.point_encoder(x)
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = F.relu(self.bn3(self.conv3(x)))
x = self.conv4(x) # x.shape:[32, 13, 2500]
x = x.transpose(2,1).contiguous() # contiguous():将tensor地址变连续,否则x.view()会报错。 x.shape:[32, 2500, 13]
x = F.log_softmax(x.view(-1, self.num_class), -1) # x.view(-1, self.num_class):[80000, 13]
x = x.view(batch_size, N, self.num_class)
return x, stn64
class Semantic_Segmentation_Loss(nn.Module):
def __init__(self, mat_diff_loss_scale=0.001):
super().__init__()
self.mat_diff_loss_scale = mat_diff_loss_scale
def forward(self, pred, target, stn64, weight):
loss = F.nll_loss(pred, target, weight)
mat_diff_loss = feature_transform_reguliarzer(stn64)
total_loss = loss + mat_diff_loss * self.mat_diff_loss_scale
return total_loss
语义分割训练与验证
注意:验证 与 测试 是两个不同任务,具体百度
train_dataset = S3DISDataSetH5(split="train")
val_dataset = S3DISDataSetH5(split="test")
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=0, drop_last=True)
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=True, num_workers=0, drop_last=True)
- PS:这里提个小插曲,我在云平台的13G内存上运行上述 4 行代码,内存不够,所以我只能运行
train
代码,我觉得内存应该大于15G,可以完美运行 上述 4 行代码
lr = 0.01
EPOCH = 60
weights = torch.tensor(train_dataset.labelweights, dtype=torch.float64) # 各类的权重
model = Semantic_Segmentation(13).double() # 13:语义分割的类别总数
optimizer = optim.Adam(model.parameters(), lr) # 优化器
criterion = Semantic_Segmentation_Loss() # 损失函数
if torch.cuda.is_available():
model = model.cuda()
weights = weights.cuda()
for epoch in range(EPOCH):
# 训练
num_batch = len(train_dataloader) # batch数量,不是batch_size
total_correct = 0 # 预测正确的数量,从第0次循环到此次循环,预测正确的数量的总和
total_point_number = 0 # 当前循环下,所遍历的点数(包括之间的循环)。即 统计出从第0次循环到此次循环,所遍历点数的总和
loss_sum = 0 # 一个batch中,总损失
model = model.train() # 设置为 训练模式
for points, labels in train_dataloader: # points.shape:[32, N, C] 例如:[32, 4096, 9] labels:[32, N] 例如:[32, 4096]
if torch.cuda.is_available():
points = points.cuda()
labels = labels.cuda()
optimizer.zero_grad()
points = points.transpose(2,1) # points.shape:[32, C, N]
sem_pre, stn64 = model(points) # sem_pre.shape:[32, N, NUM_CLASS]
sem_pre = sem_pre.contiguous().view(-1, 13)
labels = labels.view(-1, 1)[:, 0]
loss = criterion(sem_pre, labels.long(), stn64, weights) # 一个batch中的损失
loss.backward()
optimizer.step()
loss_sum = loss_sum + loss.item() # 一个batch中的总损失
pre_class = sem_pre.max(1)[1] # 每个点预测的类别
correct = torch.sum(pre_class == labels) # 每batch中的准确率
total_correct = total_correct + correct.item()
total_point_number = total_point_number + points.shape[0] * points.shape[2] # points.shape[0]:32,batch_size为32;points.shape[2]:4096,每个batch的元素中的点数为4096。
print("第"+str(epoch+1)+"轮,损失:"+str(loss_sum/32)+",准确率:"+str(total_correct/total_point_number))
torch.save(model.state_dict(), "./model/model_state_dict_"+str(epoch+1)+".pkl")
# 验证
with torch.no_grad():
num_batch = len(val_dataloader)
total_correct = 0
total_point_number = 0
loss_sum = 0
labelweights = np.zeros(13)
total_correct_class = [0] * 13 # 各类别预测正确的总数量,同时也是IOU的分子
tota1_point_number_class = [0] * 13 # 各类别的总点数
total_iou_deno_class = [0] * 13 # IOU的分母
model = model.eval()
for points, labels in val_dataloader:
points = points.type(torch.float64) # points.shape:[32, 4096, 9]
labels = labels.type(torch.long) # labels.shape:[32, 4096]
points = points.transpose(2, 1)
labels = labels.reshape(-1) # [32×4096]
sem_pre, stn64 = model(points) # sem_pre:[B, N, 13]
sem_pre = sem_pre.reshape(-1, 13) # [B×N, 13]
loss = criterion(sem_pre, labels, stn64, weights)
loss_sum = loss_sum + loss.item()
pre_class = sem_pre.max(-1)[1]
correct = torch.sum(pre_class == labels)
total_correct = total_correct + correct
total_point_number = total_point_number + points.shape[0] * points.shape[2]
temp,_ = np.histogram(labels, range(14))
labelweights = labelweights + temp
for i in range(13):
tota1_point_number_class[i] = tota1_point_number_class[i] + torch.sum( labels == i ).item()
total_correct_class[i] = total_correct_class[i] + torch.sum( (pre_class == i) & (labels == i) ).item()
total_iou_deno_class[i] = total_iou_deno_class[i] + torch.sum( (pre_class == i) | (labels == i) ).item()
labelweights = labelweights / np.sum(labelweights)
mIOU = np.mean( np.array(total_correct_class) / ( np.array(total_iou_deno_class)+1e-10 ) )
print("验证集 平均损失:%s,Avg mIOU:%s,准确率:%s,Avg 准确率:%s" % (str(loss_sum/num_batch),str(mIOU),
str(total_correct/total_point_number),
str(np.mean(np.array(total_correct_class)/np.array(tota1_point_number_class)))))
测试
- 分析源码过程中,不明白该部分,下面按照我自己的理解,构建测试代码
test_dataset = S3DISWholeSceneDataSetH5()
- 代码说明:
points, labels, weights, grid_points_index = test_dataset[room_index] # room_index:第room_index个房间
points.shape:[272, 4096, 9]
因为模型不能run这么大的数据,所以需要分开run。
272分成n个 32 大小;若272不能除尽32,则无法除尽的部分分为run的部分。
例如:
272 / 32 = 8.5 # 无法除尽
272 % 32 = 16 # 余下16个
则:
8个 [32, 4096, 9]
1个 [16, 4096, 9]
batch_size = 32
# 加载模型参数
model = Semantic_Segmentation(13).double() # 13:语义分割的类别总数
model.load_state_dict(torch.load("./model/pointnet_state_dict_18.pkl", map_location='cpu'))
model.eval()
with torch.no_grad():
room_id = test_dataset.rooms
room_size = len(test_dataset) # 272 有272个room文件
idx = 0
# 测试
for room_index in tqdm(range(room_size), total=room_size):
print("start [%d/%d] %s ..." % (room_index, room_size, room_id[room_index]))
tota1_point_number_class = [0] * 13
total_correct_class = [0] * 13
total_iou_deno_class = [0] * 13
points, labels, weights, grid_points_index = test_dataset[room_index]
points = torch.tensor(points)
labels = torch.tensor(labels)
room_pre_class = []
room_labels = []
batch_points = torch.zeros(batch_size, points.shape[1], points.shape[2])
batch_labels = torch.zeros(batch_size, points.shape[1])
sum_batch_size = 0
while points.shape[0] % batch_size != 0:
whether = int(points.shape[0] / batch_size) # 整数,whether个batch中有 32 个 批数据
final_start_batch = points.shape[0] % batch_size
if idx == whether:
batch_points = points[-final_start_batch:, :, :] # [final_start_batch, N, 9]
batch_labels = labels[-final_start_batch:, :] # [final_start_batch, N]
else:
batch_points = points[idx*batch_size:(idx+1)*batch_size, :, :] # [32, N, 9]
batch_labels = labels[idx*batch_size:(idx+1)*batch_size, :] # [32, N]
batch_points = batch_points.transpose(2, 1) # [B, 9, N]
sem_pre, _ = model(batch_points) # [B, N, 13]
pre_class = torch.max(sem_pre, dim=-1)[1] # [B, N] 预测点的类别
room_pre_class.append(pre_class)
room_labels.append(batch_labels)
idx = idx + 1
sum_batch_size = sum_batch_size + batch_points.shape[0]
if sum_batch_size == points.shape[0]:
break
room_pre_class = torch.cat(room_pre_class).reshape(-1) # [N_all]
room_labels = torch.cat(room_labels).reshape(-1) # [N_all]
for i in range(13):
tota1_point_number_class[i] = tota1_point_number_class[i] + torch.sum( room_labels == i ).item()
total_correct_class[i] = total_correct_class[i] + torch.sum( (room_pre_class == i) & (room_labels == i) ).item()
total_iou_deno_class[i] = total_iou_deno_class[i] + torch.sum( (room_pre_class == i) | (room_labels == i) ).item()
mIOU = np.mean( np.array(total_correct_class) / ( np.array(total_iou_deno_class)+1e-10 ) )
print("Avg mIOU:%s,准确率:%s" % (str(mIOU),str(sum(total_correct_class)/sum(tota1_point_number_class))))
show_point_cloud = torch.cat([points.reshape(-1,9), room_labels.reshape(-1,1), room_pre_class.reshape(-1,1)], dim=1)
f = h5py.File("./predition/"+room_id[room_index], "w")
f.create_dataset("data", data=show_point_cloud)
f.close()
显示点云
- 学习链接:https://zhuanlan.zhihu.com/p/338845304
- 显示对
Area_5_conferenceRoom_1.h5
的预测结果。 - 因为云平台的关系每次训练最长13小时,每周总共时间40小时左右,我连续训练了2次,总计26小时左右,训练了18个
EPOCH
。 - 在对
Area_5_conferenceRoom_1.h5
进行test
时,Avg mIOU为:0.03925852346625844
,准确率为:0.2383061986770073
。
# 显示预测
path = "./predition/Area_5_conferenceRoom_1.h5"
f = h5py.File(path, "r")
data = f["data"][:, :6]
pre_labels = f["data"][:, 10]
points = data[:, :3]
# 把label值 转换为 对应的RGB值
colors = np.zeros((pre_labels.shape[0],3), dtype=np.float) # shape:[N, 3]
# 把label标签值 改为 对应RGB
for i in range(13):
index = np.where(pre_labels == i)[0]
colors[index] = np.array(label2color[i]) / 255
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors) # RRB 范围:0-1
o3d.visualization.draw_geometries([pcd])
- 显示原数据(RGB 和 对应类别的颜色)
# 对应类别的颜色
path = "./data/S3DIS_hdf5/Area_5_conferenceRoom_1.h5"
f = h5py.File(path, "r")
data = np.array(f["data"])
labels = np.array(f["label"])
points = np.array(data[:, :3])
# 把label值 转换为 对应的RGB值
colors = np.zeros((labels.shape[0],3), dtype=np.float) # shape:[N, 3]
# 把label标签值 改为 对应RGB
for i in range(13):
index = np.where(labels == i)[0]
colors[index] = np.array(label2color[i]) / 255
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors) # RRB 范围:0-1
o3d.visualization.draw_geometries([pcd])
# RGB
path = "./data/S3DIS_hdf5/Area_5_conferenceRoom_1.h5"
f = h5py.File(path, "r")
data = np.array(f["data"])
# labels = np.array(f["label"])
points = np.array(data[:, :3])
colors = np.array(data[:, 3:6]) / 255
# # 把label值 转换为 对应的RGB值
# colors = np.zeros((labels.shape[0],3), dtype=np.float) # shape:[N, 3]
# # 把label标签值 改为 对应RGB
# for i in range(13):
# index = np.where(labels == i)[0]
# colors[index] = np.array(label2color[i]) / 255
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors) # RRB 范围:0-1
o3d.visualization.draw_geometries([pcd])
Reference
[1] Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660.
[2] https://github.com/yanx27/Pointnet_Pointnet2_pytorch