$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq \sen{D^k f}_{L^p}\leq C2^{jk} \sen{f}_{L^p}; \eex$$ $$\bex \supp \hat u\subset \sed{|\xi|\leq 2^j} \ra \sen{f}_{L^q}\leq C2^{jn\sex{\frac{1}{p}-\frac{1}{q}}} \sen{f}_{L^p}\quad\sex{1\leq p\leq q\leq \infty}. \eex$$ see [D. Chae, J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations, 256 (2014), 3835--3858].
相关文章
- 02-17[再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
- 02-17[再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
- 02-17[再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
- 02-17[再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
- 02-17[再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
- 02-17[再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
- 02-17[再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
- 02-17[再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
- 02-17[再寄小读者之数学篇](2014-05-27 矩阵的迹与 Jacobian)
- 02-17[再寄小读者之数学篇](2014-06-19 满足三个积分等式的函数)