PostgreSQL 11 新特性解读: 分区表增加哈希分区

PostgreSQL 11 的一个重量级新特性为分区表得到较大增强,例如支持哈希分区(HASH)表,因此 PostgreSQL 支持范围分区(RANGE)、列表分区(LIST)、>哈希分区(HASH)三种分区方式,本文简单演示下哈希分区表。

Hash Partitioning

The table is partitioned by specifying a modulus and a remainder for each partition. Each partition will hold the rows for which the hash value of the partition key divided by the specified modulus will produce the specified remainder.

Hash分区表的分区定义包含两个属性,如下:

  • modulus: 指Hash分区个数。
  • remainder: 指Hash分区键取模余。

创建分区表语法

CREATE TABLE table_name (  ...  )
[ PARTITION BY { RANGE | LIST | HASH }  (  { column_name |  ( expression )  }
 CREATE TABLE table_name
PARTITION OF parent_table [  (
)  ] FOR VALUES partition_bound_spec

创建数据生成函数

为了便于生成测试数据,创建以下两个函数用来随机生成指定长度的字符串,创建 random_range(int4, int4) 函数如下:

CREATE OR REPLACE FUNCTION random_range(int4, int4)
RETURNS int4
LANGUAGE SQL
AS 
$$

    SELECT ($1 + FLOOR(($2 - $1 + 1) * random() ))::int4;

$$
;

接着创建random_text_simple(length int4)函数,此函数会调用random_range(int4, int4)函数。

CREATE OR REPLACE FUNCTION random_text_simple(length int4)
RETURNS text
LANGUAGE PLPGSQL
AS 
$$

DECLARE
    possible_chars text := '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ';
    output text := '';
    i int4;
    pos int4;
BEGIN

    FOR i IN 1..length LOOP
        pos := random_range(1, length(possible_chars));
        output := output || substr(possible_chars, pos, 1);
    END LOOP;

    RETURN output;
END;

$$
;

random_text_simple(length int4)函数可以随机生成指定长度字符串,如下随机生成含三位字符的字符串。

mydb=> SELECT random_text_simple(3);
 random_text_simple 
--------------------
 LL9
(1 row)

随机生成含六位字符的字符串,如下所示:

mydb=> SELECT random_text_simple(6);
 random_text_simple 
--------------------
 B81BPW
(1 row)

后面会用到这个函数生成测试数据。

创建哈希分区父表

CREATE TABLE student (
 stuname text ,
 ctime   timestamp(6) without time zone
) PARTITION BY HASH(stuname);

创建索引

CREATE INDEX idx_stuendt_stuname on student using btree(stuname);

创建子表

CREATE TABLE student_p0 PARTITION OF student FOR VALUES WITH(MODULUS 4, REMAINDER 0);
CREATE TABLE student_p1 PARTITION OF student FOR VALUES WITH(MODULUS 4, REMAINDER 1);
CREATE TABLE student_p2 PARTITION OF student FOR VALUES WITH(MODULUS 4, REMAINDER 2);
CREATE TABLE student_p3 PARTITION OF student FOR VALUES WITH(MODULUS 4, REMAINDER 3);

查看分区表定义

francs=> \d+ student
                                              Table "francs.student"
 Column  |              Type              | Collation | Nullable | Default | Storage  | Stats target | Description 
---------+--------------------------------+-----------+----------+---------+----------+--------------+-------------
 stuname | text                           |           |          |         | extended |              | 
 ctime   | timestamp(6) without time zone |           |          |         | plain    |              | 
Partition key: HASH (stuname)
Indexes:
    "idx_stuendt_stuname" btree (stuname)
Partitions: student_p0 FOR VALUES WITH (modulus 4, remainder 0),
            student_p1 FOR VALUES WITH (modulus 4, remainder 1),
            student_p2 FOR VALUES WITH (modulus 4, remainder 2),
            student_p3 FOR VALUES WITH (modulus 4, remainder 3)

从以上看出表 student 和它的四个分区。

插入测试数据

使用之前创建的函数 random_text_simple() 生成100万测试数据,如下。

INSERT INTO student(stuname,ctime) SELECT random_text_simple(6),clock_timestamp() FROM generate_series(1,1000000);            

查看分区表数据

表数据如下

francs=> SELECT * FROM student LIMIT 3;
 stuname |        ctime        
---------+---------------------
 4JJOPN  | 2018-09-20 10:45:06
 NHQONC  | 2018-09-20 10:45:06
 8V5BGH  | 2018-09-20 10:45:06
(3 rows)

统计分区数据量

francs=> SELECT tableoid::regclass,count(*) from student group by 1 order by 1;
  tableoid  | count  
------------+--------
 student_p0 | 250510
 student_p1 | 249448
 student_p2 | 249620
 student_p3 | 250422
(4 rows)

可见数据均匀分布到了四个分区。

根据分区键查询

francs=> EXPLAIN ANALYZE SELECT * FROM student WHERE stuname='3LXBEV';
                                                                QUERY PLAN                                                          
      
------------------------------------------------------------------------------------------------------------------------------------

 Append  (cost=0.42..8.44 rows=1 width=15) (actual time=0.017..0.018 rows=1 loops=1)
   ->  Index Scan using student_p3_stuname_idx on student_p3  (cost=0.42..8.44 rows=1 width=15) (actual time=0.017..0.017 rows=1 loops=1)
         Index Cond: (stuname = '3LXBEV'::text)
 Planning Time: 0.198 ms
 Execution Time: 0.042 ms
(5 rows)

根据分区键stuname查询仅扫描分区 student_p3,并走了索引。

根据非分区键查询

francs=> EXPLAIN ANALYZE SELECT * FROM student WHERE ctime='2018-09-20 10:53:55.48392';
                                                          QUERY PLAN                                                           
-------------------------------------------------------------------------------------------------------------------------------
 Gather  (cost=1000.00..13761.36 rows=4 width=15) (actual time=37.891..39.183 rows=1 loops=1)
   Workers Planned: 2
   Workers Launched: 2
   ->  Parallel Append  (cost=0.00..12760.96 rows=4 width=15) (actual time=23.753..35.006 rows=0 loops=3)
         ->  Parallel Seq Scan on student_p0  (cost=0.00..3196.99 rows=1 width=15) (actual time=0.014..28.550 rows=1 loops=1)
               Filter: (ctime = '2018-09-20 10:53:55.48392'::timestamp without time zone)
               Rows Removed by Filter: 250509
         ->  Parallel Seq Scan on student_p3  (cost=0.00..3195.34 rows=1 width=15) (actual time=29.543..29.543 rows=0 loops=1)
               Filter: (ctime = '2018-09-20 10:53:55.48392'::timestamp without time zone)
               Rows Removed by Filter: 250422
         ->  Parallel Seq Scan on student_p2  (cost=0.00..3185.44 rows=1 width=15) (actual time=8.260..8.260 rows=0 loops=3)
               Filter: (ctime = '2018-09-20 10:53:55.48392'::timestamp without time zone)
               Rows Removed by Filter: 83207
         ->  Parallel Seq Scan on student_p1  (cost=0.00..3183.18 rows=1 width=15) (actual time=22.135..22.135 rows=0 loops=1)
               Filter: (ctime = '2018-09-20 10:53:55.48392'::timestamp without time zone)
               Rows Removed by Filter: 249448
 Planning Time: 0.183 ms
 Execution Time: 39.219 ms
(18 rows)

根据非分区键ctime查询扫描了分区表所有分区。

总结

本文演示了 PostgreSQL 哈希分区表的创建、测试数据的生成导入和查询计划,后面博客演示分区表增强的其它方面。

参考

新书推荐

最后推荐和张文升共同编写的《PostgreSQL实战》,本书基于PostgreSQL 10 编写,共18章,重点介绍SQL高级特性、并行查询、分区表、物理复制、逻辑复制、备份恢复、高可用、性能优化、PostGIS等,涵盖大量实战用例!

购买链接:https://item.jd.com/12405774.html
PostgreSQL 11 新特性解读: 分区表增加哈希分区

上一篇:我的博客即将入驻“云栖社区”,诚邀技术同仁一同入驻。


下一篇:PostgreSQL 11 新特性解读: 增加对JIT(just-in-time)编译的支持提升分析型SQL执行效率