题目:
Find the total area covered by two rectilinear rectangles in a 2D plane.
Each rectangle is defined by its bottom left corner and top right corner as shown in the figure.
Assume that the total area is never beyond the maximum possible value of int.
思路:
- 题意是要求两个正方形覆盖的面积,他们必然要有相交的部分,两长方形分别求面积相加,减去相交的部分
- 判断有没有相交的部分
-
代码:
public class Solution {
public int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) {
int area = (D - B) * (C - A) + (H - F) * (G - E);
if (A >= G || B >= H || C <= E || D <= F)
{
return area;
}
int top = Math.min(D, H);
int right = Math.min(C, G);
int bottom = Math.max(B, F);
int left = Math.max(A, E);
return area - (top - bottom) * (right - left);
}
}