LC327 Count of Range Number

这一题,我们使用了分治法。

首先看时间复杂度为o(n^2),比较naïve的方法:

使用一个数组sum[],长度为原数组长度+1,每一个元素sum[i]为原数组中index0~i-1之和,显然当sum[j] – sum[i]就是i~j-1之和,于是我们只需要两个for来遍历所有[i, j],并且比较是否在lower~upper之间即可。

 

但是题目要求时间复杂度由于o(n^2),考虑使用分治

1) 分:将sum[]分为左右两部分,分别计算满足条件的[i,j]

2) 合:除了i,j都在左或者都在右,还有一种情况,i在左,j在右 想要复杂度为o(nlogn),由主方法易知,合这一步必须为线性复杂度。这里有一个小trick,在合这一步中我们对这一次迭代的sum[start]-sum[end]进行排序,这样,返回之后,对于上一层函数来说,左右两部分都已经排好了序,我们只需要检测i = start~mid,mid<j,k<=end然后找到第一个sum[k]-sum[i] > lower, 和第一个sum[j] – sum[i] > upper,然后j-k就是满足条件的范围的个数。

 

代码如下:

 1 class Solution {
 2     public int countRangeSum(int[] nums, int lower, int upper) { 
 3         long[] sum = new long[nums.length+1];
 4         
 5         for(int i=0; i<nums.length; i++){
 6             sum[i+1] = sum[i] + nums[i];
 7         }
 8         
 9         return mergeSort(sum, 0, nums.length + 1, lower, upper);
10     }
11     
12     private int mergeSort(long[] sum, int start, int end, int lower, int upper){
13         if(end - start <= 1)
14             return 0;
15         int mid = start + (end - start) / 2;
16         //int mid = (start + end) / 2;
17         int count = mergeSort(sum, start, mid, lower, upper) + mergeSort(sum, mid, end, lower, upper);
18         
19         long[] tmp = new long[end - start];
20         int j = mid, k = mid, t = mid;
21         for(int i = start, r = 0; i < mid; i++, r++){
22             while(k < end && sum[k] - sum[i] < lower)
23                 k++;
24             while(j < end && sum[j] - sum[i] <= upper)
25                 j++;
26             while(t < end && sum[t] < sum[i])
27                 tmp[r++] = sum[t++];
28             tmp[r] = sum[i];
29             
30             count += j - k;
31         }
32         
33         System.arraycopy(tmp, 0, sum, start, t - start);
34         return count;
35     }
36 }

 

上一篇:lower_bound( )和upper_bound( )


下一篇:Python 使用map函数 大写变小写