在RT-Thread中给STM32F413添加CAN3
简介
目前最新的RT-Thread v4.0.2并不能直接支持STM32F413的CAN3,从配置项添加的CAN驱动只能够支持CAN1 / CAN2,而F413的CAN3需要我们手动添加。
创建STM32F413工程
首先新建一个工程stm32f413-xxx-xxx
复制模板代码bsp\stm32\libraries\templates\stm32f4xx,在《bsp\stm32\docs\STM32系列BSP制作教程.md》文件中有介绍
在bsp\stm32\stm32f413-xxx-xxx\board\Kconfig文件中修改MCU型号,改为:
config SOC_STM32F413VG
添加CAN3驱动代码
在bsp\stm32\stm32f413-xxx-xxx\board\Kconfig文件中添加CAN配置项
menuconfig BSP_USING_CAN
bool "Enable CAN"
default y
select RT_USING_CAN
if BSP_USING_CAN
config BSP_USING_CAN1
bool "Enable CAN1"
default y
config BSP_USING_CAN2
bool "Enable CAN2"
default y
config BSP_USING_CAN3
bool "Enable CAN3"
default y
endif
添加文件bsp\stm32\stm32f413-xxx-xxx\board\drv_can.c,含CAN3代码
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-08-05 Xeon Xu the first version
* 2019-01-22 YLZ port from stm324xx-HAL to bsp stm3210x-HAL
* 2019-02-19 YLZ add support EXTID RTR Frame. modify send, recv functions.
* fix bug.port to BSP [stm32]
* 2019-03-27 YLZ support double can channels, support stm32F4xx (only Legacy mode).
* 2019-06-17 YLZ port to new STM32F1xx HAL V1.1.3.
* 2021-04-19 unit,lhs support 3 can channels, support stm32F413VGTx
*/
#include "drv_can.h"
#ifdef BSP_USING_CAN
#define LOG_TAG "drv_can"
#include <drv_log.h>
/* attention !!! baud calculation example: Tclk / ((ss + bs1 + bs2) * brp) 36 / ((1 + 8 + 3) * 3) = 1MHz*/
#if defined (SOC_SERIES_STM32F1)/* APB1 36MHz(max) */
static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
{
{CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 3)},
{CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_5TQ | CAN_BS2_3TQ | 5)},
{CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 6)},
{CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 12)},
{CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 24)},
{CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 30)},
{CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 60)},
{CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 150)},
{CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 300)}
};
#elif defined (SOC_SERIES_STM32F4)/* APB1 45MHz(max) */
static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
{
{CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 3)},
{CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_5TQ | 4)},
{CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 6)},
{CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 12)},
{CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 24)},
{CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 30)},
{CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 60)},
{CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 150)},
{CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 300)}
};
#elif defined (SOC_SERIES_STM32F7)/* APB1 54MHz(max) */
static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
{
{CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 3)},
{CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_7TQ | 4)},
{CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 6)},
{CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 12)},
{CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 24)},
{CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 30)},
{CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 60)},
{CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 150)},
{CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 300)}
};
#endif
#ifdef BSP_USING_CAN1
static struct stm32_can drv_can1 =
{
.name = "can1",
.CanHandle.Instance = CAN1,
};
#endif
#ifdef BSP_USING_CAN2
static struct stm32_can drv_can2 =
{
"can2",
.CanHandle.Instance = CAN2,
};
#endif
#ifdef BSP_USING_CAN3
static struct stm32_can drv_can3 =
{
"can3",
.CanHandle.Instance = CAN3,
};
#endif
static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
{
rt_uint32_t len, index;
len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
for (index = 0; index < len; index++)
{
if (can_baud_rate_tab[index].baud_rate == baud)
return index;
}
return 0; /* default baud is CAN1MBaud */
}
static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
{
struct stm32_can *drv_can;
rt_uint32_t baud_index;
RT_ASSERT(can);
RT_ASSERT(cfg);
drv_can = (struct stm32_can *)can->parent.user_data;
RT_ASSERT(drv_can);
drv_can->CanHandle.Init.TimeTriggeredMode = DISABLE;
drv_can->CanHandle.Init.AutoBusOff = ENABLE;
drv_can->CanHandle.Init.AutoWakeUp = DISABLE;
drv_can->CanHandle.Init.AutoRetransmission = DISABLE;
drv_can->CanHandle.Init.ReceiveFifoLocked = DISABLE;
drv_can->CanHandle.Init.TransmitFifoPriority = ENABLE;
switch (cfg->mode)
{
case RT_CAN_MODE_NORMAL:
drv_can->CanHandle.Init.Mode = CAN_MODE_NORMAL;
break;
case RT_CAN_MODE_LISEN:
drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT;
break;
case RT_CAN_MODE_LOOPBACK:
drv_can->CanHandle.Init.Mode = CAN_MODE_LOOPBACK;
break;
case RT_CAN_MODE_LOOPBACKANLISEN:
drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT_LOOPBACK;
break;
}
baud_index = get_can_baud_index(cfg->baud_rate);
drv_can->CanHandle.Init.SyncJumpWidth = BAUD_DATA(SJW, baud_index);
drv_can->CanHandle.Init.TimeSeg1 = BAUD_DATA(BS1, baud_index);
drv_can->CanHandle.Init.TimeSeg2 = BAUD_DATA(BS2, baud_index);
drv_can->CanHandle.Init.Prescaler = BAUD_DATA(RRESCL, baud_index);
/* init can */
if (HAL_CAN_Init(&drv_can->CanHandle) != HAL_OK)
{
return -RT_ERROR;
}
/* default filter config */
HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
/* can start */
HAL_CAN_Start(&drv_can->CanHandle);
return RT_EOK;
}
static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
{
rt_uint32_t argval;
struct stm32_can *drv_can;
struct rt_can_filter_config *filter_cfg;
RT_ASSERT(can != RT_NULL);
drv_can = (struct stm32_can *)can->parent.user_data;
RT_ASSERT(drv_can != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
}
#endif
#ifdef CAN3
if (CAN3 == drv_can->CanHandle.Instance)
{
HAL_NVIC_DisableIRQ(CAN3_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN3_RX1_IRQn);
}
#endif
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_DisableIRQ(CAN1_TX_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
HAL_NVIC_DisableIRQ(CAN2_TX_IRQn);
}
#endif
#ifdef CAN3
if (CAN3 == drv_can->CanHandle.Instance)
{
HAL_NVIC_DisableIRQ(CAN3_TX_IRQn);
}
#endif
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
if (CAN1 == drv_can->CanHandle.Instance)
{
NVIC_DisableIRQ(CAN1_SCE_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
NVIC_DisableIRQ(CAN2_SCE_IRQn);
}
#endif
#ifdef CAN3
if (CAN3 == drv_can->CanHandle.Instance)
{
NVIC_DisableIRQ(CAN3_SCE_IRQn);
}
#endif
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
}
break;
case RT_DEVICE_CTRL_SET_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN1_RX0_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_RX0_IRQn);
HAL_NVIC_SetPriority(CAN1_RX1_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_RX1_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN2_RX0_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_RX0_IRQn);
HAL_NVIC_SetPriority(CAN2_RX1_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_RX1_IRQn);
}
#endif
#ifdef CAN3
if (CAN3 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN3_RX0_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN3_RX0_IRQn);
HAL_NVIC_SetPriority(CAN3_RX1_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN3_RX1_IRQn);
}
#endif
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN1_TX_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN2_TX_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_TX_IRQn);
}
#endif
#ifdef CAN3
if (CAN3 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN3_TX_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN3_TX_IRQn);
}
#endif
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN1_SCE_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_SCE_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN2_SCE_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_SCE_IRQn);
}
#endif
#ifdef CAN3
if (CAN3 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN3_SCE_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN3_SCE_IRQn);
}
#endif
}
break;
case RT_CAN_CMD_SET_FILTER:
if (RT_NULL == arg)
{
/* default filter config */
HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
}
else
{
filter_cfg = (struct rt_can_filter_config *)arg;
/* get default filter */
for (int i = 0; i < filter_cfg->count; i++)
{
drv_can->FilterConfig.FilterBank = filter_cfg->items[i].hdr;
drv_can->FilterConfig.FilterIdHigh = (filter_cfg->items[i].id >> 13) & 0xFFFF;
drv_can->FilterConfig.FilterIdLow = ((filter_cfg->items[i].id << 3) |
(filter_cfg->items[i].ide << 2) |
(filter_cfg->items[i].rtr << 1)) & 0xFFFF;
drv_can->FilterConfig.FilterMaskIdHigh = (filter_cfg->items[i].mask >> 16) & 0xFFFF;
drv_can->FilterConfig.FilterMaskIdLow = filter_cfg->items[i].mask & 0xFFFF;
drv_can->FilterConfig.FilterMode = filter_cfg->items[i].mode;
/* Filter conf */
HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
}
}
break;
case RT_CAN_CMD_SET_MODE:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_NORMAL &&
argval != RT_CAN_MODE_LISEN &&
argval != RT_CAN_MODE_LOOPBACK &&
argval != RT_CAN_MODE_LOOPBACKANLISEN)
{
return -RT_ERROR;
}
if (argval != drv_can->device.config.mode)
{
drv_can->device.config.mode = argval;
return _can_config(&drv_can->device, &drv_can->device.config);
}
break;
case RT_CAN_CMD_SET_BAUD:
argval = (rt_uint32_t) arg;
if (argval != CAN1MBaud &&
argval != CAN800kBaud &&
argval != CAN500kBaud &&
argval != CAN250kBaud &&
argval != CAN125kBaud &&
argval != CAN100kBaud &&
argval != CAN50kBaud &&
argval != CAN20kBaud &&
argval != CAN10kBaud)
{
return -RT_ERROR;
}
if (argval != drv_can->device.config.baud_rate)
{
drv_can->device.config.baud_rate = argval;
return _can_config(&drv_can->device, &drv_can->device.config);
}
break;
case RT_CAN_CMD_SET_PRIV:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_PRIV &&
argval != RT_CAN_MODE_NOPRIV)
{
return -RT_ERROR;
}
if (argval != drv_can->device.config.privmode)
{
drv_can->device.config.privmode = argval;
return _can_config(&drv_can->device, &drv_can->device.config);
}
break;
case RT_CAN_CMD_GET_STATUS:
{
rt_uint32_t errtype;
errtype = drv_can->CanHandle.Instance->ESR;
drv_can->device.status.rcverrcnt = errtype >> 24;
drv_can->device.status.snderrcnt = (errtype >> 16 & 0xFF);
drv_can->device.status.lasterrtype = errtype & 0x70;
drv_can->device.status.errcode = errtype & 0x07;
rt_memcpy(arg, &drv_can->device.status, sizeof(drv_can->device.status));
}
break;
}
return RT_EOK;
}
static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
{
CAN_HandleTypeDef *hcan;
hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
CAN_TxHeaderTypeDef txheader = {0};
HAL_CAN_StateTypeDef state = hcan->State;
/* Check the parameters */
RT_ASSERT(IS_CAN_DLC(pmsg->len));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/*check select mailbox is empty */
switch (1 << box_num)
{
case CAN_TX_MAILBOX0:
if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME0) != SET)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
/* Return function status */
return -RT_ERROR;
}
break;
case CAN_TX_MAILBOX1:
if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME1) != SET)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
/* Return function status */
return -RT_ERROR;
}
break;
case CAN_TX_MAILBOX2:
if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME2) != SET)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
/* Return function status */
return -RT_ERROR;
}
break;
default:
RT_ASSERT(0);
break;
}
if (RT_CAN_STDID == pmsg->ide)
{
txheader.IDE = CAN_ID_STD;
RT_ASSERT(IS_CAN_STDID(pmsg->id));
txheader.StdId = pmsg->id;
}
else
{
txheader.IDE = CAN_ID_EXT;
RT_ASSERT(IS_CAN_EXTID(pmsg->id));
txheader.ExtId = pmsg->id;
}
if (RT_CAN_DTR == pmsg->rtr)
{
txheader.RTR = CAN_RTR_DATA;
}
else
{
txheader.RTR = CAN_RTR_REMOTE;
}
/* clear TIR */
hcan->Instance->sTxMailBox[box_num].TIR &= CAN_TI0R_TXRQ;
/* Set up the Id */
if (RT_CAN_STDID == pmsg->ide)
{
hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.StdId << CAN_TI0R_STID_Pos) | txheader.RTR;
}
else
{
hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.ExtId << CAN_TI0R_EXID_Pos) | txheader.IDE | txheader.RTR;
}
/* Set up the DLC */
hcan->Instance->sTxMailBox[box_num].TDTR = pmsg->len & 0x0FU;
/* Set up the data field */
WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDHR,
((uint32_t)pmsg->data[7] << CAN_TDH0R_DATA7_Pos) |
((uint32_t)pmsg->data[6] << CAN_TDH0R_DATA6_Pos) |
((uint32_t)pmsg->data[5] << CAN_TDH0R_DATA5_Pos) |
((uint32_t)pmsg->data[4] << CAN_TDH0R_DATA4_Pos));
WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDLR,
((uint32_t)pmsg->data[3] << CAN_TDL0R_DATA3_Pos) |
((uint32_t)pmsg->data[2] << CAN_TDL0R_DATA2_Pos) |
((uint32_t)pmsg->data[1] << CAN_TDL0R_DATA1_Pos) |
((uint32_t)pmsg->data[0] << CAN_TDL0R_DATA0_Pos));
/* Request transmission */
SET_BIT(hcan->Instance->sTxMailBox[box_num].TIR, CAN_TI0R_TXRQ);
return RT_EOK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return -RT_ERROR;
}
}
static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
{
HAL_StatusTypeDef status;
CAN_HandleTypeDef *hcan;
struct rt_can_msg *pmsg;
CAN_RxHeaderTypeDef rxheader = {0};
RT_ASSERT(can);
hcan = &((struct stm32_can *)can->parent.user_data)->CanHandle;
pmsg = (struct rt_can_msg *) buf;
/* get data */
status = HAL_CAN_GetRxMessage(hcan, fifo, &rxheader, pmsg->data);
if (HAL_OK != status)
return -RT_ERROR;
/* get id */
if (CAN_ID_STD == rxheader.IDE)
{
pmsg->ide = RT_CAN_STDID;
pmsg->id = rxheader.StdId;
}
else
{
pmsg->ide = RT_CAN_EXTID;
pmsg->id = rxheader.ExtId;
}
/* get type */
if (CAN_RTR_DATA == rxheader.RTR)
{
pmsg->rtr = RT_CAN_DTR;
}
else
{
pmsg->rtr = RT_CAN_RTR;
}
/* get len */
pmsg->len = rxheader.DLC;
/* get hdr */
if (hcan->Instance == CAN1)
{
pmsg->hdr = (rxheader.FilterMatchIndex + 1) >> 1;
}
#ifdef CAN2
else if (hcan->Instance == CAN2)
{
pmsg->hdr = (rxheader.FilterMatchIndex >> 1) + 14;
}
#endif
#ifdef CAN3
else if (hcan->Instance == CAN3)
{
pmsg->hdr = (rxheader.FilterMatchIndex + 1) >> 1;
}
#endif
return RT_EOK;
}
static const struct rt_can_ops _can_ops =
{
_can_config,
_can_control,
_can_sendmsg,
_can_recvmsg,
};
static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
{
CAN_HandleTypeDef *hcan;
RT_ASSERT(can);
hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
switch (fifo)
{
case CAN_RX_FIFO0:
/* save to user list */
if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_MSG_PENDING))
{
rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
}
/* Check FULL flag for FIFO0 */
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_FULL))
{
/* Clear FIFO0 FULL Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF0);
}
/* Check Overrun flag for FIFO0 */
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_OVERRUN))
{
/* Clear FIFO0 Overrun Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV0);
rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
}
break;
case CAN_RX_FIFO1:
/* save to user list */
if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_MSG_PENDING))
{
rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
}
/* Check FULL flag for FIFO1 */
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_FULL))
{
/* Clear FIFO1 FULL Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF1);
}
/* Check Overrun flag for FIFO1 */
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_OVERRUN))
{
/* Clear FIFO1 Overrun Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV1);
rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
}
break;
}
}
#ifdef BSP_USING_CAN1
/**
* @brief This function handles CAN1 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
*/
void CAN1_TX_IRQHandler(void)
{
rt_interrupt_enter();
CAN_HandleTypeDef *hcan;
hcan = &drv_can1.CanHandle;
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
}
else
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
}
else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
}
else
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
}
else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
}
else
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
}
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 RX0 interrupts.
*/
void CAN1_RX0_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can1.device, CAN_RX_FIFO0);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 RX1 interrupts.
*/
void CAN1_RX1_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can1.device, CAN_RX_FIFO1);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 SCE interrupts.
*/
void CAN1_SCE_IRQHandler(void)
{
rt_uint32_t errtype;
CAN_HandleTypeDef *hcan;
hcan = &drv_can1.CanHandle;
errtype = hcan->Instance->ESR;
rt_interrupt_enter();
HAL_CAN_IRQHandler(hcan);
switch ((errtype & 0x70) >> 4)
{
case RT_CAN_BUS_BIT_PAD_ERR:
drv_can1.device.status.bitpaderrcnt++;
break;
case RT_CAN_BUS_FORMAT_ERR:
drv_can1.device.status.formaterrcnt++;
break;
case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
drv_can1.device.status.ackerrcnt++;
if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
else if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
else if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
break;
case RT_CAN_BUS_IMPLICIT_BIT_ERR:
case RT_CAN_BUS_EXPLICIT_BIT_ERR:
drv_can1.device.status.biterrcnt++;
break;
case RT_CAN_BUS_CRC_ERR:
drv_can1.device.status.crcerrcnt++;
break;
}
drv_can1.device.status.lasterrtype = errtype & 0x70;
drv_can1.device.status.rcverrcnt = errtype >> 24;
drv_can1.device.status.snderrcnt = (errtype >> 16 & 0xFF);
drv_can1.device.status.errcode = errtype & 0x07;
hcan->Instance->MSR |= CAN_MSR_ERRI;
rt_interrupt_leave();
}
#endif /* BSP_USING_CAN1 */
#ifdef BSP_USING_CAN2
/**
* @brief This function handles CAN2 TX interrupts.
*/
void CAN2_TX_IRQHandler(void)
{
rt_interrupt_enter();
CAN_HandleTypeDef *hcan;
hcan = &drv_can2.CanHandle;
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
}
else
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
}
else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
}
else
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
}
else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
}
else
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
}
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 RX0 interrupts.
*/
void CAN2_RX0_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can2.device, CAN_RX_FIFO0);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 RX1 interrupts.
*/
void CAN2_RX1_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can2.device, CAN_RX_FIFO1);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 SCE interrupts.
*/
void CAN2_SCE_IRQHandler(void)
{
rt_uint32_t errtype;
CAN_HandleTypeDef *hcan;
hcan = &drv_can2.CanHandle;
errtype = hcan->Instance->ESR;
rt_interrupt_enter();
HAL_CAN_IRQHandler(hcan);
switch ((errtype & 0x70) >> 4)
{
case RT_CAN_BUS_BIT_PAD_ERR:
drv_can2.device.status.bitpaderrcnt++;
break;
case RT_CAN_BUS_FORMAT_ERR:
drv_can2.device.status.formaterrcnt++;
break;
case RT_CAN_BUS_ACK_ERR:
drv_can2.device.status.ackerrcnt++;
if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
else if (!READ_BIT(drv_can2.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
else if (!READ_BIT(drv_can2.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
break;
case RT_CAN_BUS_IMPLICIT_BIT_ERR:
case RT_CAN_BUS_EXPLICIT_BIT_ERR:
drv_can2.device.status.biterrcnt++;
break;
case RT_CAN_BUS_CRC_ERR:
drv_can2.device.status.crcerrcnt++;
break;
}
drv_can2.device.status.lasterrtype = errtype & 0x70;
drv_can2.device.status.rcverrcnt = errtype >> 24;
drv_can2.device.status.snderrcnt = (errtype >> 16 & 0xFF);
drv_can2.device.status.errcode = errtype & 0x07;
hcan->Instance->MSR |= CAN_MSR_ERRI;
rt_interrupt_leave();
}
#endif /* BSP_USING_CAN2 */
#ifdef BSP_USING_CAN3
/**
* @brief This function handles CAN3 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
*/
void CAN3_TX_IRQHandler(void)
{
rt_interrupt_enter();
CAN_HandleTypeDef *hcan;
hcan = &drv_can3.CanHandle;
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
{
rt_hw_can_isr(&drv_can3.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
}
else
{
rt_hw_can_isr(&drv_can3.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
}
else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
{
rt_hw_can_isr(&drv_can3.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
}
else
{
rt_hw_can_isr(&drv_can3.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
}
else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
{
rt_hw_can_isr(&drv_can3.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
}
else
{
rt_hw_can_isr(&drv_can3.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
}
rt_interrupt_leave();
}
/**
* @brief This function handles CAN3 RX0 interrupts.
*/
void CAN3_RX0_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can3.device, CAN_RX_FIFO0);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN3 RX1 interrupts.
*/
void CAN3_RX1_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can3.device, CAN_RX_FIFO1);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN3 SCE interrupts.
*/
void CAN3_SCE_IRQHandler(void)
{
rt_uint32_t errtype;
CAN_HandleTypeDef *hcan;
hcan = &drv_can3.CanHandle;
errtype = hcan->Instance->ESR;
rt_interrupt_enter();
HAL_CAN_IRQHandler(hcan);
switch ((errtype & 0x70) >> 4)
{
case RT_CAN_BUS_BIT_PAD_ERR:
drv_can3.device.status.bitpaderrcnt++;
break;
case RT_CAN_BUS_FORMAT_ERR:
drv_can3.device.status.formaterrcnt++;
break;
case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
drv_can3.device.status.ackerrcnt++;
if (!READ_BIT(drv_can3.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can3.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
else if (!READ_BIT(drv_can3.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can3.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
else if (!READ_BIT(drv_can3.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can3.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
break;
case RT_CAN_BUS_IMPLICIT_BIT_ERR:
case RT_CAN_BUS_EXPLICIT_BIT_ERR:
drv_can3.device.status.biterrcnt++;
break;
case RT_CAN_BUS_CRC_ERR:
drv_can3.device.status.crcerrcnt++;
break;
}
drv_can3.device.status.lasterrtype = errtype & 0x70;
drv_can3.device.status.rcverrcnt = errtype >> 24;
drv_can3.device.status.snderrcnt = (errtype >> 16 & 0xFF);
drv_can3.device.status.errcode = errtype & 0x07;
hcan->Instance->MSR |= CAN_MSR_ERRI;
rt_interrupt_leave();
}
#endif /* BSP_USING_CAN3 */
/**
* @brief Error CAN callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
{
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERROR_WARNING |
CAN_IT_ERROR_PASSIVE |
CAN_IT_BUSOFF |
CAN_IT_LAST_ERROR_CODE |
CAN_IT_ERROR |
CAN_IT_RX_FIFO0_MSG_PENDING |
CAN_IT_RX_FIFO0_OVERRUN |
CAN_IT_RX_FIFO0_FULL |
CAN_IT_RX_FIFO1_MSG_PENDING |
CAN_IT_RX_FIFO1_OVERRUN |
CAN_IT_RX_FIFO1_FULL |
CAN_IT_TX_MAILBOX_EMPTY);
}
int rt_hw_can_init(void)
{
struct can_configure config = CANDEFAULTCONFIG;
config.privmode = RT_CAN_MODE_NOPRIV;
config.ticks = 50;
#ifdef RT_CAN_USING_HDR
config.maxhdr = 14;
#ifdef CAN2
config.maxhdr = 28;
#endif
#endif
/* config default filter */
CAN_FilterTypeDef filterConf = {0};
filterConf.FilterIdHigh = 0x0000;
filterConf.FilterIdLow = 0x0000;
filterConf.FilterMaskIdHigh = 0x0000;
filterConf.FilterMaskIdLow = 0x0000;
filterConf.FilterFIFOAssignment = CAN_FILTER_FIFO0;
filterConf.FilterBank = 0;
filterConf.FilterMode = CAN_FILTERMODE_IDMASK;
filterConf.FilterScale = CAN_FILTERSCALE_32BIT;
filterConf.FilterActivation = ENABLE;
filterConf.SlaveStartFilterBank = 14;
#ifdef BSP_USING_CAN1
filterConf.FilterBank = 0;
drv_can1.FilterConfig = filterConf;
drv_can1.device.config = config;
/* register CAN1 device */
rt_hw_can_register(&drv_can1.device,
drv_can1.name,
&_can_ops,
&drv_can1);
#endif /* BSP_USING_CAN1 */
#ifdef BSP_USING_CAN2
filterConf.FilterBank = filterConf.SlaveStartFilterBank;
drv_can2.FilterConfig = filterConf;
drv_can2.device.config = config;
/* register CAN2 device */
rt_hw_can_register(&drv_can2.device,
drv_can2.name,
&_can_ops,
&drv_can2);
#endif /* BSP_USING_CAN2 */
#ifdef BSP_USING_CAN3
filterConf.FilterBank = 0;
drv_can3.FilterConfig = filterConf;
drv_can3.device.config = config;
/* register CAN3 device */
rt_hw_can_register(&drv_can3.device,
drv_can3.name,
&_can_ops,
&drv_can3);
#endif /* BSP_USING_CAN3 */
return 0;
}
INIT_BOARD_EXPORT(rt_hw_can_init);
#endif /* BSP_USING_CAN */
/************************** end of file ******************/
生成keil5工程以及配置参数
scons --target=mdk5
去掉默认链接的F4xx库文件,因为默认F4xx库文件不支持F413系列
bsp\stm32\libraries\STM32F4xx_HAL\*
重新添加相关源文件
bsp\stm32\stm32f413-xxx-xxx\board\drv_can.c
bsp\stm32\stm32f413-xxx-xxx\board\CubeMX_Config\Drivers\STM32F4xx_HAL_Driver\Src\*
bsp\stm32\stm32f413-xxx-xxx\board\CubeMX_Config\MDK-ARM\startup_stm32f413xx.s
bsp\stm32\stm32f413-xxx-xxx\board\CubeMX_Config\Src\system_stm32f4xx.c
修改包含F413的路径
board\CubeMX_Config\Drivers\CMSIS\Device\ST\STM32F4xx\Include
board\CubeMX_Config\Drivers\CMSIS\Include
board\CubeMX_Config\Drivers\STM32F4xx_HAL_Driver\Inc
board\CubeMX_Config\Drivers\STM32F4xx_HAL_Driver\Inc\Legacy
运行代码
编译并下载运行,此时驱动已经添加到设备列表
\ | /
- RT - Thread Operating System
/ | \ 4.0.2 build Apr 19 2021
2006 - 2019 Copyright by rt-thread team
msh />list_d
list_device
msh />list_device
device type ref count
-------- -------------------- ----------
can3 CAN Device 0
can2 CAN Device 0
can1 CAN Device 0
uart8 Character Device 0
uart7 Character Device 0
uart6 Character Device 0
uart3 Character Device 2
uart2 Character Device 0
uart1 Character Device 0
pin Miscellaneous Device 0
msh />
注:驱动是否正常未经过验证!!!
参考资料
[1] https://blog.csdn.net/tcjy1000/article/details/110904956