from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X=[[1,2,3,4,5], [5,4,3,2,1], [3,3,3,3,3,], [1,1,1,1,1]] print("before transform:",X) encoder=OneHotEncoder(sparse=False) encoder.fit(X) print("active_features_:",encoder.active_features_) print("feature_indices_:",encoder.feature_indices_) print("n_values_:",encoder.n_values_) print("after transform:",encoder.transform([[1,2,3,4,5]])) # 调用 test_OneHotEncoder test_OneHotEncoder()