【bzoj2653】【middle】【主席树+二分答案】

Description

一个长度为 n 的序列 a ,设其排过序之后为 b ,其中位数定义为 b[n/2] ,其中 a,b 从 0 开始标号 , 除法取下整。 
给你一个长度为 n 的序列 s 。回答 Q 个这样的询问 : s 的左端点在 [a,b] 之间 , 右端点在 [c,d] 之间的子序列中 ,最大的中位数。 
其中 a

Solution

对着题解理解了半天……又对着代码调了半天……最后发现竟然是一个函数名没写orz

不过不得不说这题真的是主席树好题

先考虑二分答案,找出区间内比mid小的数有多少

因为对答案的贡献只有有或没有,所以可以把比mid小的都设为-1,比mid大的都设为1,如果区间内的和大于等于0,说明mid可行,继续二分下去

然而如果离散之后对每一个值建树,空间毫无疑问爆炸

于是只要用主席树维护一下就可以了

 //minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char obuf[<<],*o=obuf;
inline void print(int x){
if(x>) print(x/);
*o++=x%+;
}
const int N=,M=N*;
int n,Pre,q,cnt;
int rt[N],p[];
struct node{
int l,r,lmx,rmx,sum;
}t[M],op;
struct data{
int x,id;
inline bool operator <(const data &b)const
{return x<b.x;}
}a[N];
inline void pushup(int x){
t[x].sum=t[t[x].l].sum+t[t[x].r].sum;
t[x].lmx=max(t[t[x].l].lmx,t[t[x].l].sum+t[t[x].r].lmx);
t[x].rmx=max(t[t[x].r].rmx,t[t[x].r].sum+t[t[x].l].rmx);
}
void build(int &now,int l,int r){
now=++cnt;
if(l==r){t[now].lmx=t[now].rmx=t[now].sum=;return;}
int mid=(l+r)>>;
build(t[now].l,l,mid);
build(t[now].r,mid+,r);
pushup(now);
}
void update(int last,int &now,int l,int r,int k){
now=++cnt;
if(l==r){t[now].lmx=t[now].rmx=t[now].sum=-;return;}
int mid=(l+r)>>;
if(k<=mid) t[now].r=t[last].r,update(t[last].l,t[now].l,l,mid,k);
else t[now].l=t[last].l,update(t[last].r,t[now].r,mid+,r,k);
pushup(now);
}
node merge(node x,node y){
node z;
z.sum=x.sum+y.sum;
z.lmx=max(x.lmx,x.sum+y.lmx);
z.rmx=max(y.rmx,y.sum+x.rmx);
return z;
}
node find(int x,int l,int r,int y,int z){
if(y>z) return op;
if(l==y&&r==z) return t[x];
int mid=(l+r)>>;
if(z<=mid) return find(t[x].l,l,mid,y,z);
else if(y>mid) return find(t[x].r,mid+,r,y,z);
else return merge(find(t[x].l,l,mid,y,mid),find(t[x].r,mid+,r,mid+,z));
}
int query(int x){
return find(rt[x],,n,p[],p[]).rmx+find(rt[x],,n,p[]+,p[]-).sum+find(rt[x],,n,p[],p[]).lmx;
}
int main(){
//freopen("testdata.in","r",stdin);
n=read();
for(int i=;i<=n;++i) a[i].x=read(),a[i].id=i;
sort(a+,a++n);
build(rt[],,n);
for(int i=;i<=n;++i) update(rt[i-],rt[i],,n,a[i-].id);
q=read();
while(q--){
int x=read(),y=read(),z=read(),k=read();
p[]=(x+Pre)%n+,p[]=(y+Pre)%n+,p[]=(z+Pre)%n+,p[]=(k+Pre)%n+;
sort(p+,p+);
int l=,r=n,ans=;
while(l<=r){
int mid=(l+r)>>;
int f=query(mid);
if(f>=) ans=mid,l=mid+;
else r=mid-;
}
Pre=a[ans].x;
print(a[ans].x),*o++='\n';
}
fwrite(obuf,o-obuf,,stdout);
return ;
}
上一篇:序列流、对象操作流、打印流、标准输入输出流、随机访问流、数据输入输出流、Properties(二十二)


下一篇:BZOJ2653 middle 【主席树】【二分】*