Elasticsearch JAVA api搞定groupBy聚合

本文给出如何使用Elasticsearch的Java API做类似SQL的group by聚合。

为了简单起见,只给出一级groupby即group by field1(而不涉及到多级,例如group by field1, field2, ...);如果你需要多级的groupby,在实现上可能需要拆分的更加细致。

即将给出的方法,适用于如下的场景:

场景1:找出分组中的所有桶,例如,select group_name from index_name group by group_name;

场景2:灵活添加一个或者多个聚合函数,例如,select group_name, max(count), avg(count) group by group_name;

1、用法

GroupBy类是我们的实现。

1)测试用例

public static void main(String[] args) {
/*
* 初始化es客户端
* */
ESClient esClient = new ESClient(
"dqa-cluster",
"10.93.21.21:9300,10.93.18.34:9300,10.93.18.35:9300,100.90.62.33:9300,100.90.61.14:9300",
false); /*
* 为了演示, 构造了一个距离查询, 相当于where子句.
* */
GeoDistanceRangeQueryBuilder queryBuilder = QueryBuilders.geoDistanceRangeQuery("location")
.point(39.971424, 116.398251)
.from("0m")
.to(String.format("%fm", 500.0))
.includeLower(true)
.includeUpper(true)
.optimizeBbox("memory")
.geoDistance(GeoDistance.SLOPPY_ARC); SearchRequestBuilder search = esClient.getClient().prepareSearch("moon").setTypes("bj")
.setSearchType(SearchType.DFS_QUERY_AND_FETCH)
.setQuery(queryBuilder); /*
* GroupBy类就是我们的实现, 初始化的时候传入的参数依次是, search, 桶命名, 分桶字段, 排序asc
* select date as date_group from index group by date;
* */
GroupBy groupBy = new GroupBy(search, "date_group", "date", true); /*
* 添加各种分组函数
* 这里我实现了10种, 下面是其中的6种
* */
groupBy.addSumAgg("pre_total_fee_sum", "pre_total_fee");
groupBy.addAvgAgg("pre_total_fee_avg", "pre_total_fee");
groupBy.addPercentilesAgg("pre_total_fee_percent", "pre_total_fee");
groupBy.addPercentileRanksAgg("pre_total_fee_percentRank", "pre_total_fee", new double[]{13, 16, 20});
groupBy.addStatsAgg("pre_total_fee_stats", "pre_total_fee");
groupBy.addCardinalityAgg("type_card", "type"); /*
* 获取groupBy聚合的结果
* 结果是两级Map, 这里的实现是TreeMap因为要保护桶的排序
* */
Map<String, Object> groupbyResponse = groupBy.getGroupbyResponse();
for (Map.Entry<String, Object> entry : groupbyResponse.entrySet()) {
String bucketKey = entry.getKey();
Map<String, String> subAggMap = (Map<String, String>) entry.getValue();
System.out.println(String.format("%s\t%s\t%s", bucketKey, "pre_total_fee_sum", subAggMap.get("pre_total_fee_sum")));
System.out.println(String.format("%s\t%s\t%s", bucketKey, "pre_total_fee_avg", subAggMap.get("pre_total_fee_avg")));
System.out.println(String.format("%s\t%s\t%s", bucketKey, "pre_total_fee_percent", subAggMap.get("pre_total_fee_percent")));
System.out.println(String.format("%s\t%s\t%s", bucketKey, "pre_total_fee_percentRank", subAggMap.get("pre_total_fee_percentRank")));
System.out.println(String.format("%s\t%s\t%s", bucketKey, "pre_total_fee_stats", subAggMap.get("pre_total_fee_stats")));
System.out.println(String.format("%s\t%s\t%s", bucketKey, "type_card", subAggMap.get("type_card"))); }
}

2)初始化

初始化的时候,相当于构造了这样一个SQL:select date as date_group from index group by date;

传入search对象,相当于where子句

传入分桶命名, 相当于 as date_group

传入分桶字段,相当于date

传入排序,asc=true

3)初始化完成后,可以添加各种聚合函数,也就是场景2。

GroupBy类里实现了10种聚合函数

4)读取结果

结果的返回是两级Map,为了保护分桶的排序,实现中使用了TreeMap。

这里需要注意的是,有些聚合函数的返回,并不是一个值,而是一组值,如Percentiles、Stats等等,这里我们把这一组值压缩成JSONString了。

5)打印输出

我们以日期进行了分桶,同一个分桶中的聚合结果,sum、avg、cardinality都是单个的值。而percentiles、percentileRanks、stats是压缩的jsonstring。

Elasticsearch JAVA api搞定groupBy聚合

2、实现

先上代码,然后在后面进行讲解。

public class GroupBy {

    private SearchRequestBuilder search;

    private String termsName;

    private TermsBuilder termsBuilder;

    private List<Map<String, Object>> subAggList = new ArrayList<Map<String, Object>>();

    public GroupBy(SearchRequestBuilder search, String termsName, String fieldName, boolean asc) {
this.search = search;
this.termsName = termsName;
termsBuilder = AggregationBuilders.terms(termsName).field(fieldName).order(Terms.Order.term(asc)).size(0);
} private void addSubAggList(String aggName, MetricsAggregationBuilder aggBuilder) {
Map<String, Object> subAgg = new HashMap<String, Object>();
subAgg.put("aggName", aggName);
subAgg.put("aggBuilder", aggBuilder);
subAggList.add(subAgg);
} public void addSumAgg(String aggName, String fieldName) {
SumBuilder builder = AggregationBuilders.sum(aggName).field(fieldName);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
} public boolean bucketSumAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) {
if (aggBuilder instanceof SumBuilder) {
tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString());
return true;
} else {
return false;
}
} public void addCountAgg(String aggName, String fieldName) {
ValueCountBuilder builder = AggregationBuilders.count(aggName).field(fieldName);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
} public boolean bucketCountAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) {
if (aggBuilder instanceof ValueCountBuilder) {
tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString());
return true;
} else {
return false;
}
} public void addAvgAgg(String aggName, String fieldName) {
AvgBuilder builder = AggregationBuilders.avg(aggName).field(fieldName);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
} public boolean bucketAvgAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) {
if (aggBuilder instanceof AvgBuilder) {
tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString());
return true;
} else {
return false;
}
} public void addMinAgg(String aggName, String fieldName) {
MinBuilder builder = AggregationBuilders.min(aggName).field(fieldName);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
} public boolean bucketMinAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) {
if (aggBuilder instanceof MinBuilder) {
tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString());
return true;
} else {
return false;
}
} public void addMaxAgg(String aggName, String fieldName) {
MaxBuilder builder = AggregationBuilders.max(aggName).field(fieldName);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
} public boolean bucketMaxAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) {
if (aggBuilder instanceof MaxBuilder) {
tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString());
return true;
} else {
return false;
}
} public void addStatsAgg(String aggName, String fieldName) {
StatsBuilder builder = AggregationBuilders.stats(aggName).field(fieldName);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
} public boolean bucketStatsAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) {
if (aggBuilder instanceof StatsBuilder) {
Stats stats = bucket.getAggregations().get(aggName);
JSONObject jsonObject = new JSONObject();
jsonObject.put("min", stats.getMin());
jsonObject.put("max", stats.getMax());
jsonObject.put("sum", stats.getMax());
jsonObject.put("count", stats.getCount());
jsonObject.put("avg", stats.getAvg());
tmpMap.put(aggName, jsonObject.toJSONString());
return true;
} else {
return false;
}
} public void addExtendedStatsAgg(String aggName, String fieldName) {
ExtendedStatsBuilder builder = AggregationBuilders.extendedStats(aggName).field(fieldName);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
} public boolean bucketExtendedStatsAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) {
if (aggBuilder instanceof ExtendedStatsBuilder) {
ExtendedStats extendedStats = bucket.getAggregations().get(aggName);
JSONObject jsonObject = new JSONObject();
jsonObject.put("min", extendedStats.getMin());
jsonObject.put("max", extendedStats.getMax());
jsonObject.put("sum", extendedStats.getMax());
jsonObject.put("count", extendedStats.getCount());
jsonObject.put("avg", extendedStats.getAvg());
jsonObject.put("stdDeviation", extendedStats.getStdDeviation());
jsonObject.put("sumOfSquares", extendedStats.getSumOfSquares());
jsonObject.put("variance", extendedStats.getVariance());
tmpMap.put(aggName, jsonObject.toJSONString());
return true;
} else {
return false;
}
} public void addPercentilesAgg(String aggName, String fieldName) {
PercentilesBuilder builder = AggregationBuilders.percentiles(aggName).field(fieldName);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
} public void addPercentilesAgg(String aggName, String fieldName, double[] percentiles) {
PercentilesBuilder builder = AggregationBuilders.percentiles(aggName).field(fieldName).percentiles(percentiles);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
} public boolean bucketPercentilesAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) {
if (aggBuilder instanceof PercentilesBuilder) {
Percentiles percentiles = bucket.getAggregations().get(aggName);
JSONObject jsonObject = new JSONObject();
for (Percentile percentile : percentiles) {
jsonObject.put(String.valueOf(percentile.getPercent()), percentile.getValue());
}
tmpMap.put(aggName, jsonObject.toJSONString());
return true;
} else {
return false;
}
} public void addPercentileRanksAgg(String aggName, String fieldName, double[] percentiles) {
PercentileRanksBuilder builder = AggregationBuilders.percentileRanks(aggName).field(fieldName).percentiles(percentiles);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
} public boolean bucketPercentileRanksAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) {
if (aggBuilder instanceof PercentileRanksBuilder) {
PercentileRanks percentileRanks = bucket.getAggregations().get(aggName);
JSONObject jsonObject = new JSONObject();
for (Percentile percentile : percentileRanks) {
jsonObject.put(String.valueOf(percentile.getPercent()), percentile.getValue());
}
tmpMap.put(aggName, jsonObject.toJSONString());
return true;
} else {
return false;
}
} public void addCardinalityAgg(String aggName, String fieldName) {
CardinalityBuilder builder = AggregationBuilders.cardinality(aggName).field(fieldName);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
} public boolean bucketCardinalityAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) {
if (aggBuilder instanceof CardinalityBuilder) {
tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString());
return true;
} else {
return false;
}
} public List<Terms.Bucket> getTermsBucket() {
search.addAggregation(termsBuilder);
Terms termsGroup = search.get().getAggregations().get(termsName);
return termsGroup.getBuckets();
} public Map<String, Object> getGroupbyResponse() {
Map<String, Object> aggResponseMap = new TreeMap<String, Object>();
for (Terms.Bucket bucket : getTermsBucket()) {
String bucketKeyAsString = bucket.getKeyAsString();
Map<String, String> tmpMap = new TreeMap<String, String>();
for (Map<String, Object> subAgg : subAggList) {
String subAggName = subAgg.get("aggName").toString();
MetricsAggregationBuilder subAggBuilder = (MetricsAggregationBuilder) subAgg.get("aggBuilder");
if (bucketAvgAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketMaxAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketMinAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketSumAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketCountAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketCardinalityAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketPercentileRanksAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketPercentilesAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketExtendedStatsAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketStatsAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
}
aggResponseMap.put(bucketKeyAsString, tmpMap);
}
return aggResponseMap;
}
}

1)构造函数

构造函数中,核心逻辑是termsBuilder = AggregationBuilders.terms(termsName).field(fieldName).order(Terms.Order.term(asc)).size(0);

实例化了termsBuilder也就是分桶。

后面调用add...函数簇添加聚合函数的时候,都是通过termsBuilder.subAggregation(builder)在分桶的基础上添加了子聚合。

最后在获取结果的时候search.addAggregation(termsBuilder);将termsBuilder添加到查询上,进行聚合查询。

2)添加聚合函数add...函数簇

以sum函数为例

public void addSumAgg(String aggName, String fieldName) {
SumBuilder builder = AggregationBuilders.sum(aggName).field(fieldName);
termsBuilder.subAggregation(builder);
addSubAggList(aggName, builder);
}

a)初始化了一个SumBuilder聚合操作,然后作为termsBuilder的子聚合。

b)addSubAggList方法在subAggList属性(subAggList属性是一个List<Map<String, Object>>)上保存了所有添加了的子聚合的名字和builder。这样做是为了在解析结果的时候,知道是哪种type的聚合(instanceof),以便使用不同的逻辑去解析。

private void addSubAggList(String aggName, MetricsAggregationBuilder aggBuilder) {
Map<String, Object> subAgg = new HashMap<String, Object>();
subAgg.put("aggName", aggName);
subAgg.put("aggBuilder", aggBuilder);
subAggList.add(subAgg);
}

3)按类型获取结果

还是以sum函数为例

public boolean bucketSumAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) {
if (aggBuilder instanceof SumBuilder) {
tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString());
return true;
} else {
return false;
}
}

a)这里先判断了aggBuilder是哪种类型的(instanceof),如果是SumBuilder类型的,就按照sum的结果类型去读取返回结果。

b)sum的返回结果就是一个值,当遇到percentiles这种类型的,返回结果不是一个值,此时为了简单,我将结果压缩成了jsonstring,也相当于一个值,可以自行参看代码。

c)后面依赖return true实现了一个逻辑,一旦命中了类型,就不再继续判断了,提升效率。

d)tmpMap是外部传入的一个全局接收器,用来存储结果。

4)解析所有的子聚合结果

public Map<String, Object> getGroupbyResponse() {
Map<String, Object> aggResponseMap = new TreeMap<String, Object>();
for (Terms.Bucket bucket : getTermsBucket()) {
String bucketKeyAsString = bucket.getKeyAsString();
Map<String, String> tmpMap = new TreeMap<String, String>();
for (Map<String, Object> subAgg : subAggList) {
String subAggName = subAgg.get("aggName").toString();
MetricsAggregationBuilder subAggBuilder = (MetricsAggregationBuilder) subAgg.get("aggBuilder");
if (bucketAvgAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketMaxAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketMinAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketSumAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketCountAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketCardinalityAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketPercentileRanksAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketPercentilesAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketExtendedStatsAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
if (bucketStatsAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue;
}
aggResponseMap.put(bucketKeyAsString, tmpMap);
}
return aggResponseMap;
}

这里是解析结果的代码。tmpMap定义为全局接收器。

a)通过遍历subAggList存储的所有子聚合函数,获取所有的子聚合结果,并保存成两级TreeMap。

b)对每个迭代,调用所有的bucket...函数簇,这里通过if判断是否命中类型,如果命中了,就通过continue不再继续检查。

c) aggResponseMap使用treeMap是为了保持bucket的有序。

3、十种聚合函数

最后列出我们实现的十种聚合函数,你可以根据自己的需求继续添加。

1)返回单个值:sum、avg、min、max、count、cardinality(有误差)

2)percentiles:分位数查询,传入分位数,获取分位数上的值;percentileRanks,分位数排名查询,传入值,返回对应的分位数;互为逆向操作。

3)stats和extendedStats,extended聚合更详细的信息max、min、avg、sum、平方和、标准差等。

上一篇:【bzoj2006】【NOI2015】超级钢琴


下一篇:Elasticsearch的Java API做类似SQL的group by聚合。