原文链接www.cnblogs.com/zhouzhendong/p/ZJOI2019Day1T2.html
前言
在LOJ交了一下我的代码,发现它比选手机快将近 4 倍。
题解
对于线段树上每一个节点,维护以下信息:
1. 这个点为 1 的概率。
2. 这个点为 0 ,且它有祖先是 1 的概率。
其中,第一种东西在维护了 2. 的情况下十分好求。
第二种东西,只有两类:
1. 一次线段树操作涉及到所有的节点,显然只要乘 0.5 。
2. 某些节点打了标记之后,它的所有子孙都被他影响了。于是我们加个区间修改就好了。
时间复杂度 $O(n\log n)$ 。跑的很快。
好像有一种矩阵乘法的做法,但是它可能会被卡常数。
代码
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define For(i,a,b) for (int i=a;i<=b;i++)
#define Fod(i,b,a) for (int i=b;i>=a;i--)
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define fi first
#define se second
#define outval(x) printf(#x" = %d\n",x)
#define outtag(x) puts("----------------"#x"----------------");
#define outvec(x) printf("vec "#x" = ");For(_i,0,(int)x.size()-1)printf("%d ",x[i]);puts("");
#define outarr(x,L,R) printf(#x"[%d..%d] = ",L,R);For(__i,L,R)printf("%d ",x[i]);puts("");
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
LL read(){
LL f=0,x=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=100005,mod=998244353;
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
void Del(int &x,int y){
if ((x-=y)<0)
x+=mod;
}
int n,m,inv2,P=1;
int ans=0;
int p[N<<2];
int p2[N<<2],add[N<<2];
void build(int rt,int L,int R){
p[rt]=p2[rt]=0,add[rt]=1;
if (L==R)
return;
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
build(ls,L,mid);
build(rs,mid+1,R);
}
void pushson(int rt,int v){
add[rt]=(LL)add[rt]*v%mod;
p2[rt]=((LL)v*p2[rt]%mod+(LL)(mod+1-v)*(mod+1-p[rt])%mod)%mod;
}
void pushdown(int rt){
if (add[rt]!=1){
int ls=rt<<1,rs=ls|1;
pushson(ls,add[rt]);
pushson(rs,add[rt]);
add[rt]=1;
}
}
void update(int rt,int L,int R,int xL,int xR){
if (R<xL||L>xR){
Del(ans,p[rt]);
p[rt]=((LL)p2[rt]*inv2+p[rt])%mod;
Add(ans,p[rt]);
p2[rt]=(LL)p2[rt]*inv2%mod;
return;
}
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
if (xL<=L&&R<=xR){
//no pushdown
Del(ans,p[rt]);
p[rt]=(LL)(p[rt]+1)*inv2%mod;
Add(ans,p[rt]);
p2[rt]=(LL)p2[rt]*inv2%mod;
if (L!=R){
pushson(ls,inv2);
pushson(rs,inv2);
}
return;
}
pushdown(rt);
Del(ans,p[rt]);
p[rt]=(LL)p[rt]*inv2%mod;
Add(ans,p[rt]);
p2[rt]=(LL)p2[rt]*inv2%mod;
update(ls,L,mid,xL,xR);
update(rs,mid+1,R,xL,xR);
}
int main(){
n=read(),m=read();
build(1,1,n);
inv2=(mod+1)/2;
while (m--){
int type=read();
if (type==1){
P=(LL)P*2%mod;
int L=read(),R=read();
update(1,1,n,L,R);
}
else {
int val=(LL)ans*P%mod;
printf("%d\n",val);
}
}
return 0;
}