generator 1
题意
给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大)
分析
比赛的时候失了智,一直在想怎么把10进制转化成二进制来求,实际上可以换一种想法,既然转化不成二进制,那么直接就用十进制倍增行吗?只要对快速幂理解透彻,是可以实现的(快速幂的2进制证明改成10进制就证明成功了)
这题有个坑的地方是膜多了会T
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
char s[maxn];
typedef long long ll;
int mod;
struct mat{
ll m[3][3];
mat(){
memset(m,0,sizeof(m));
}
};
mat Mul(mat a,mat b){
mat res;
int i,j,k;
for( i=1;i<=2;i++){
for( j=1;j<=2;j++){
res.m[i][j]=0;
for(k=1;k<=2;k++){
res.m[i][j]+=(a.m[i][k]*b.m[k][j]);
res.m[i][j]%=mod;
}
}
}
return res;
}
mat fpow(mat a,ll b){
mat ans;
for(int i=1;i<=2;i++)ans.m[i][i]=1;
while(b){
if(b&1)ans=Mul(ans,a);
a=Mul(a,a);
b>>=1;
}
return ans;
}
int main(){
int x0,x1,a,b;
scanf("%d%d%d%d",&x0,&x1,&a,&b);
scanf("%s%d",s,&mod);
int len=strlen(s);
mat bs,ans;
bs.m[1][1]=a,bs.m[1][2]=b;
bs.m[2][1]=1;
ans.m[1][1]=ans.m[2][2]=1;
for(int i=len-1;i>=0;i--){
ans=Mul(ans,fpow(bs,s[i]-'0'));
bs=fpow(bs,10);
}
printf("%d",(1ll*x1*ans.m[2][1]%mod+1ll*x0*ans.m[2][2]%mod)%mod);
return 0;
}