2.8 将hadoop-2.0.0-cdh4.2.0.zip上传到/opt,并解压缩9
2.15 将master01机上的/opt/hadoop拷贝到其他机器上14
2.16 第一次启动hadoop需要先格式化NameNode14
2.18 在master01机上启动mapreduce,historyserver14
4.4 配置hive-site.xml文件,将meta信息保存在mysql里19
4.5 将mysql-connector-java-5.1.18.tar.gz解压22
Hadoop一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以流的形式访问(streaming access)文件系统中的数据。
?0?1 CDH基于稳定版Apache Hadoop,并应用了最新Bug修复或者Feature的Patch。Cloudera常年坚持季度发行Update版本,年度发行Release版本,更新速度比Apache官方快,而且在实际使用过程中CDH表现无比稳定,并没有引入新的问题。
?0?1 Cloudera官方网站上安装、升级文档详细,省去Google时间。
?0?1 CDH支持Yum/Apt包,Tar包,RPM包,Cloudera Manager四种方式安装
?0?1 获取最新特性和最新Bug修复;安装维护方便,节省运维时间
[root@master01 ~]# lsb_release -a
LSBVersion: :base-4.0-ia32:base-4.0-noarch:core-4.0-ia32:core-4.0-noarch:graphics-4.0-ia32:graphics-4.0-noarch:printing-4.0-ia32:printing-4.0-noarch
Distributor ID: CentOS
Description: CentOS release 6.4 (Final)
Release: 6.4
Codename: Final
jdk-7-linux-i586.rpm [77.2M]
hadoop-2.0.0-cdh4.2.0 [129M]
此安装包URL下载:http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://archive.cloudera.com/cdh4/cdh/4/
[root@master01 local]# rpm -qa | grep jdk
java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.i686
yum -y remove java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.i686
yum -y remove java-1.6.0-openjdk-1.6.0.0-1.50.1.11.5.el6_3.i686
[root@master01 local]# rpm -ivh jdk-7-linux-i586.rpm
Preparing... ########################################### [100%]
1:jdk ########################################### [100%]
& 注意
下面有设置JAVA_HOME环境的清单,写在~/.bashrc.sh文件里
另外请注意:生产环境下一般为64位机,请下载相应的64位JDK包进行安装
vi /etc/hosts
192.168.2.18 master01
192.168.2.19 master02
192.168.2.163 slave01
192.168.2.38 slave02
192.168.2.212 slave03
& 注意:其他机器也要修改
rsync -vzrtopgu --progress /etc/hosts 192.168.2.38:/etc/hosts
ssh-keygen -t rsa
ssh-copy-id -i ~/.ssh/id_rsa.pub root@slave01
ssh-copy-id -i ~/.ssh/id_rsa.pub root@slave02
& 注意
Master01机本身也要设置一下哦!
cd ~
cat id_rsa.pub >>authorized_keys
service iptables stop
& 说明
如果不关闭防火墙,让datanode通过namenode机的访问,请配置slave01,slave02等相关机器的iptables表,各台机器都要能互相访问
vi /etc/sysconfig/iptables
添加:
-I INPUT -s 192.168.2.18 -j ACCEPT
-I INPUT -s 192.168.2.38 -j ACCEPT
-I INPUT -s 192.168.2.87 -j ACCEPT
开启master01的8088和50070端口,方便WEB访问namenode和mapreduce
图1
图2
2.8 将hadoop-2.0.0-cdh4.2.0.zip上传到/opt,并解压缩
tar xzvf hadoop-2.0.0-cdh4.2.0.tar.gz
mv hadoop-2.0.0-cdh4.2.0 hadoop
cd hadoop/etc/hadoop/
③ 解压后进入:~/bin/hadoop-0.20.2/conf/,修改配置文件:
修改hadoop-env.sh:
export JAVA_HOME=/root/bin/jdk1.6.0_32 转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/
hadoop-env.sh里面有这一行,默认是被注释的,只需要把注释去掉,并且把JAVA_HOME 改成你的java安装目录即可
vi core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://master01</value>
</property>
<property>
<name>fs.trash.interval</name>
<value>10080</value>
</property>
<property>
<name>fs.trash.checkpoint.interval</name>
<value>10080</value>
</property>
</configuration>
vi hdfs-site.xml
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/data/hadoop-${user.name}</value>
</property>
<property>
<name>dfs.namenode.http-address</name>
<value>master01:50070</value>
</property>
<property>
<name>dfs.secondary.http.address</name>
<value>master02:50090</value>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
vi slaves
slave01
slave02
cp mapred-site.xml.template mapred-site.xml
vi mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>master01:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master01:19888</value>
</property>
</configuration>
<!--[if gte mso 9]><xml><w:WordDocument><w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel><w:DisplayHorizontalDrawingGridEvery>0</w:DisplayHorizontalDrawingGridEvery><w:DisplayVerticalDrawingGridEvery>2</w:DisplayVerticalDrawingGridEvery><w:DocumentKind>DocumentNotSpecified</w:DocumentKind><w:DrawingGridVerticalSpacing>7.8</w:DrawingGridVerticalSpacing><w:View>Normal</w:View><w:Compatibility></w:Compatibility><w:Zoom>0</w:Zoom></w:WordDocument></xml><![endif]-->
vi yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master01:8031</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>master01:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>master01:8030</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>master01:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>master01:8088</value>
</property>
<property>
<description>Classpath for typical applications.</description>
<name>yarn.application.classpath</name>
<value>$HADOOP_CONF_DIR,$HADOOP_COMMON_HOME/share/hadoop/common/*,
$HADOOP_COMMON_HOME/share/hadoop/common/lib/*,
$HADOOP_HDFS_HOME/share/hadoop/hdfs/*,$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*,
$YARN_HOME/share/hadoop/yarn/*,$YARN_HOME/share/hadoop/yarn/lib/*,
$YARN_HOME/share/hadoop/mapreduce/*,$YARN_HOME/share/hadoop/mapreduce/lib/*</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce.shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/opt/data/yarn/local</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/opt/data/yarn/logs</value>
</property>
<property>
<description>Where to aggregate logs</description>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>/opt/data/yarn/logs</value>
</property>
<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/user</value>
</property>
</configuration>
cd ~
vi .bashrc
#export LANG=zh_CN.utf8
export JAVA_HOME=/usr/java/jdk1.7.0
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=./:$JAVA_HOME/lib:$JRE_HOME/lib:$JRE_HOME/lib/tools.jar
export HADOOP_HOME=/opt/hadoop
export HIVE_HOME=/opt/hive
export HBASE_HOME=/opt/hbase
export HADOOP_MAPRED_HOME=${HADOOP_HOME}
export HADOOP_COMMON_HOME=${HADOOP_HOME}
export HADOOP_HDFS_HOME=${HADOOP_HOME}
export YARN_HOME=${HADOOP_HOME}
export HADOOP_YARN_HOME=${HADOOP_HOME}
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HDFS_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export YARN_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export PATH=$PATH:$HOME/bin:$JAVA_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin:$HIVE_HOME/bin
source .bashrc
1.2 将master01机上的/opt/hadoop拷贝到其他机器上
rsync -vzrtopgu --progress hadoop slave01:/opt/
rsync -vzrtopgu --progress hadoop slave02:/opt/
或者
rsync -vzrtopgu --progress hadoop 192.168.2.38:/opt/
rsync -vzrtopgu --progress hadoop 192.168.2.163:/opt/
& rsync命令参数解释
-v, --verbose 详细模式输出
-z, --compress 对备份的文件在传输时进行压缩处理
-r, --recursive 对子目录以递归模式处理
-t, --times 保持文件时间信息
-o, --owner 保持文件属主信息
-p, --perms 保持文件权限
-g, --group 保持文件属组信息
-u, --update 仅仅进行更新,也就是跳过所有已经存在于DST,并且文件时间晚于要备份的文件。(不覆盖更新的文件)
/opt/hadoop/bin/hadoop namenode -format
& 说明:
该操作只做一次。当修改了配置文件时,需要重新格式化
/opt/hadoop/sbin/start-dfs.sh
1.5 在master01机上启动mapreduce,historyserver
/opt/hadoop/sbin/start-yarn.sh
/opt/hadoop/sbin/mr-jobhistory-daemon.sh start historyserver
http://192.168.2.18:8088/cluster
http://192.168.2.163:8042/node/node
[root@master01 ~]# jps
5389 NameNode
5980 Jps
5710 ResourceManager
7032 JobHistoryServer
[root@slave01 ~]# jps
3187 Jps
3124 SecondaryNameNode
[root@slave02~]# jps
3187 Jps
3124 DataNode
5711 NodeManager
/opt/hadoop/sbin/stop-all.sh
zookeeper-3.4.5-cdh4.2.0.tar.gz
tar xzvf zookeeper-3.4.5-cdh4.2.0.tar.gz
mv zookeeper-3.4.5-cdh4.2.0 zookeeper
cd conf/
cp zoo_sample.cfg zoo.cfg
vi zoo.cfg
# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between
# sending a request and getting an acknowledgement
syncLimit=5
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just
# example sakes.
dataDir=/opt/zookeeper/data
#dataLogDir=/opt/zookeeper/log
# the port at which the clients will connect
clientPort=2181
#
# Be sure to read the maintenance section of the
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to "0" to disable auto purge feature
#autopurge.purgeInterval=1
server.1=master01:2888:3888
server.2=master02:2888:3888
server.3=slave01:2888:3888
server.4=slave02:2888:3888
vi ~/.bashrc
export ZOOKEEPER_HOME=/opt/zookeeper
export PATH=$PATH:$ZOOKEEPER_HOME/bin
mkdir /opt/zookeeper/data
touch myid
vi myid
第一台机器写入数字1
第二台机器写入数字2
依此类推
rsync -vzrtopgu --progress zookeeper master02:/opt/
rsync -vzrtopgu --progress zookeeper slave01:/opt/
rsync -vzrtopgu --progress zookeeper slave02:/opt/
sh /opt/zookeeper/bin/zkServer.sh start
[root@master01 zookeeper]# jps
3459 JobHistoryServer
6259 Jps
2906 NameNode
3171 ResourceManager
6075 QuorumPeerMain
/opt/zookeeper/bin/zkCli.sh -server master01:2181
或者
sh /opt/zookeeper/bin/zkServer.sh stop
sh /opt/zookeeper/bin/zkServer.sh stop
http://archive.cloudera.com/cdh4/cdh/4/zookeeper-3.4.5-cdh4.2.0/
hive-0.10.0-cdh4.2.0 [43.2M]
mysql-connector-java-5.1.18.tar.gz [3.65M]
slave03机器,安装hive+thrift+sqoop,专门作为数据分析用途。
和mysql整合前,请务必配置好各机器间能访问Mysql服务器机
GRANT select, insert, update, delete ON *.* TO 'hadoop'@'slave01' IDENTIFIED BY 'hadoop';
GRANT select, insert, update, delete ON *.* TO 'hadoop'@'slave01' IDENTIFIED BY 'hadoop';
GRANT select, insert, update, delete ON *.* TO 'hadoop'@'slave01' IDENTIFIED BY 'hadoop';
flush privileges;
show grants for 'hive'@'slave03';
revoke all on *.* from 'hadoop'@'slave01';
drop user 'hive'@'slave03';
& 说明
测试环境下,本人仍然用slave03机做mysql服务器。在实际生产环境中,建议用专门的机器做Mysql。
3.4 配置hive-site.xml文件,将meta信息保存在mysql里
cd /opt/hive
vi hive-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name><value>jdbc:mysql://slave03:3306/hive?createDatabaseIfNotExist=true&characterEncoding=UTF-8</value>
<description>JDBC connect string for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>hadoop</value>
<description>username to use against metastore database</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>hadoop</value>
<description>password to use against metastore database</description>
</property>
<property>
<name>mapred.job.tracker</name>
<value>master01:8031</value>
</property>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/opt/data/warehouse-${user.name}</value>
<description>location of default database for the warehouse</description>
</property>
<property>
<name>hive.exec.scratchdir</name>
<value>/opt/data/hive-${user.name}</value>
<description>Scratch space for Hive jobs</description>
</property>
<property>
<name>hive.querylog.location</name>
<value>/opt/data/querylog-${user.name}</value>
<description>
Location of Hive run time structured log file
</description>
</property>
<property>
<name>hive.support.concurrency</name>
<description>Enable Hive's Table Lock Manager Service</description>
<value>false</value>
</property>
<property>
<name>hive.hwi.listen.host</name>
<value>master01</value>
<description>This is the host address the Hive Web Interface will listen on</description>
</property>
<property>
<name>hive.hwi.listen.port</name>
<value>9999</value>
<description>This is the port the Hive Web Interface will listen on</description>
</property>
<property>
<name>hive.hwi.war.file</name>
<value>lib/hive-hwi-0.10.0-cdh4.2.0.war</value>
<description>This is the WAR file with the jsp content for Hive Web Interface</description>
</property>
</configuration>
3.5 将mysql-connector-java-5.1.18.tar.gz解压
tar xzvf mysql-connector-java-5.1.18.tar.gz
mv mysql-connector-java-5.1.18-bin.jar /opt/hive/lib
create database hive;
alter database hive character set latin1;
& 注意:
如果不设置上述命令,则会出现如下:
Specified key was too long; max key length is 767 bytes
tail /tmp/root/hive.log
1) CREATE TABLE mytest2(num INT, name STRING) COMMENT 'only a test' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE;
2) LOAD DATA LOCAL INPATH '/var/22.txt' INTO TABLE mytest2;
Thrift.zip [71.7K] 下载URL:http://download.csdn.net/detail/jiedushi/3409880
PHP安装,略过
vi test.php
<?php
$GLOBALS['THRIFT_ROOT'] = '/home/wwwroot/Thrift/';
require_once $GLOBALS['THRIFT_ROOT'] . 'packages/hive_service/ThriftHive.php';
require_once $GLOBALS['THRIFT_ROOT'] . 'transport/TSocket.php';
require_once $GLOBALS['THRIFT_ROOT'] . 'protocol/TBinaryProtocol.php';
$transport = new TSocket('slave03', 10000);
$protocol = new TBinaryProtocol($transport);
$client = new ThriftHiveClient($protocol);
$transport->open();
#$client->execute('add jar /opt/hive/lib/hive-contrib-0.10.0-cdh4.2.0.jar ');
$client->execute("LOAD DATA LOCAL INPATH '/var/22.txt' INTO TABLE mytest2");
$client->execute("SELECT COUNT(1) FROM mytest2");
var_dump($client->fetchAll());
$transport->close();
?>
& 说明:
/var/22.txt文件内容为:
1 jj
2 kk
与上一章2.5的操作同步
/opt/hive/bin/hive --service hiveserver >/dev/null 2>/dev/null &
netstat -lntp|grep 10000
php test.php
?0?1 Warning: stream_set_timeout(): supplied argument is not a valid stream resource in /home/wwwroot/Thrift/transport/TSocket.php on line 213
修改php.ini中的disable_functions
disable_functions = passthru,exec,system,chroot,scandir,chgrp,chown,shell_exec,proc_get_status,ini_alter,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru
sqoop-1.4.2-cdh4.2.0.tar.gz [6M]
按第一章的介绍步骤配置好hadoop,环境变量HADOOP_HOME已经设置好。
cd /opt/
tar xzvf sqoop-1.4.2-cdh4.2.0.tar
mv sqoop-1.4.2-cdh4.2.0 sqoop
将mysql-connector-java-5.1.18-bin.jar包放至/opt/sqoop/lib下
vi /opt/sqoop/bin/configure-sqoop
因为没安装hbase,请注释
#if [ ! -d "${HBASE_HOME}" ]; then
# echo "Warning: $HBASE_HOME does not exist! HBase imports will fail."
# echo 'Please set $HBASE_HOME to the root of your HBase installation.'
#fi
vi ~/.bashrc
export PATH=$PATH:$HOME/bin:$JAVA_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin:$HIVE_HOME/bin:$ANT_HOME/bin:/opt/sqoop/bin
?0?1 列出mysql数据库中的所有数据库命令
sqoop list-databases --connect jdbc:mysql://slave03:3306/ --username hadoop --password hadoop
?0?1 列出表名:
sqoop list-tables -connect jdbc:mysql://slave03/ggg -username hadoop -password hadoop
?0?1 将关系型数据的表结构复制到hive中
sqoop create-hive-table --connect jdbc:mysql://master01:3306/ggg --table hheccc_area --username hadoop --password hadoop --hive-table ggg_hheccc_area
?0?1 从关系数据库导入文件到hive中
sqoop import -connect jdbc:mysql://slave03/ggg -username hadoop -password hadoop -table sp_log_fee -hive-import --hive-table hive_log_fee --split-by id -m 4
& 参照
一般导入:
import \
--append \
--connect $DS_BJ_HOTBACKUP_URL \
--username $DS_BJ_HOTBACKUP_USER \
--password $DS_BJ_HOTBACKUP_PWD \
--table 'seven_book_sync' \
--where "create_date >= '${par_31days}' and create_date < '${end_date}'" \
--hive-import \
--hive-drop-import-delims \
--hive-table ${hive_table} \ //可以点分法识别schema.table
--m 1
以时间作为增量条件是最好的办法
并行导入:
sqoop import --append --connect $CONNECTURL --username $ORACLENAME --password $ORACLEPASSWORD --target-dir $hdfsPath --m 12 --split-by CLIENTIP --table $oralceTableName --columns $columns --fields-terminated-by '\001' --where "data_desc='2011-02-26'"
增量导入:
sqoop import --connect jdbc:mysql://master01:3306/ggg --username hadoop --password hadoop --table hheccc_area --columns "id,name,reid,disorder" --direct --hive-import --hive-table hheccc_area --incremental append --check-column id --last-value 0
sqoop job --exec area_import
以上为网上找来的命令,经测试,不起作用。留着仅供参考。
?0?1 将hive中的表数据导出到mysql中
sqoop export --connect jdbc:mysql://master01:3306/ggg --username hadoop --password hadoop --table mytest2 --export-dir /opt/data/warehouse-root/ggg_hheccc_area
& 备注
分区保存:/user/hive/warehouse/uv/dt=2011-08-03
?0?1 Encountered IOException running import job: org.apache.hadoop.fs.FileAlreadyExistsException: Output directory hdfs://master01/user/root/hheccc_area already exists
/opt/hadoop/bin/hadoop fs -rm -r /user/root/hheccc_area
- hadoop2.0.0-CDH4.2.0系列手工安装指南.rar (822 KB)
- 下载次数: 60