【CDN+】 Kylin 的初步认识与理解

前言

项目中用到了Kylin框架来处理数据,那么作为项目成员需要了解哪些关于Kylin的知识呢,本文就Kylin得基本概念和原理进行简述。

 

Kylin基本概念

首先想到的学习路径是Kylin官网: http://kylin.apache.org/cn/ 

给出的概念是: Apache Kylin™是一个开源的分布式分析引擎,提供Hadoop/Spark之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由eBay Inc. 开发并贡献至开源社区。它能在亚秒内查询巨大的Hive表。

由Kylin的概念可以得出:

1. Kylin是一个国产的处理hadoop、spark等超大规模数据的一种分布式引擎

2. Kylin 是基于OLAP的

3. Kylin的速度非常快,亚秒级别可以在超大规模数据完成数据查询操作(亚秒也就是比1秒要慢一点点,大约1.2秒这样)

什么是OLAP?

OLAP: On-Line Analytic Processing 联机分析处理,分为:

MOLAP : Multi-Dimensional OLAP  kylin是一个MOLAP系统,通过预计算的方式缓存了所有需要查询的的数据结果,需要大量的存储空间(原数据量的10+倍)。

ROLAP: Relational OLAP   Mondrian是一个ROLAP系统,所有的查询可以通过实时的数据库查询完成,而不会有任何的预计算,大大节约了存储空间的要求(但是会有查询结果的缓存,目前是缓存在程序内存中,很容易导致OOM

HOLAP: Hybrid OLAP  混合型的OLAP。

 

为什么Kylin 能够实现超大数据的亚秒级查询?

官网给出的解答是:

Apache Kylin™令使用者仅需三步,即可实现超大数据集上的亚秒级查询。

1 定义数据集上的一个星形或雪花形模型

2 在定义的数据表上构建cube

3 使用标准SQL通过ODBC、JDBC或RESTFUL API进行查询,仅需亚秒级响应时间即可获得查询结果

顺藤摸瓜,那么什么是Kylin 星形、雪花模型呢?

星型模型

有一张事实表、以及零个或多个维度表;事实表与维度表通过 主键/外键 相关联,维度表之间没有关联,就像很多星星围绕在一个恒星周围,顾命名为星型模型。

【CDN+】 Kylin 的初步认识与理解

雪花模型:

如果将星型模型中某些维度的表再做规范,抽取成更细的维度表,然后让维度表之间也进行关联,那么这种模型成为雪花模型(雪花模型可以通过一定的转换,变为星型模型)

【CDN+】 Kylin 的初步认识与理解

如何构建Cube

Cube 即多维立方体,也叫数据立方体。如下图所示,这是由三个维度(维度数可以超过3个,下图仅为了方便画图表达)构成的一个OLAP立方体,立方体中包含了满足条件的cell(子立方块)值,这些cell里面包含了要分析的数据,称之为度量值。
【CDN+】 Kylin 的初步认识与理解

 

 

Cube:由维度构建出来的多维空间,包含了所有要分析的基础数据,所有的聚合数据操作都在立方体上进行

Dimension:观察数据的角度。一般是一组离散的值,比如:

    • 时间维度上的每一个独立的日期
    • 商品维度上的每一件独立的商品

Measure:即聚合计算的结果,一般是连续的值,比如:

    • 销售额,销售均价
    • 销售商品的总件数

事实表:是指存储有事实记录(明细数据)的表,如系统日志、销售记录等;事实表的记录在不断地动态增长,数据量大

维度表(维表):保存了维度值,可以跟事实表做关联。常见的维度表如:

    • 日期表
    • 地点表
    • 分类表

Cuboid:对于每一种维度的组合,将度量做聚合运算,然后将运算的结果保存为一个物化视图,称为 Cuboid (即为上图的最小立方体单元,这也是cube的基石)

    思考:

    一个 Cube 有(M+N)个维度,那么会有 2的(M+N)次方 个 Cuboid ---------注意Kylin里面有很多方法可以减少无效的Cuboid, 例如某个表里面包含了

    国家--省--市--县城  ,那么其他的组合都是错误的,这类可以直接排除。

    Kylin查询为什么快,就是因为这个Cuboid包含了用户想要查询的任何情况,计算复杂度是O(1) 

举一个简单Cube 代码例子,它可以是一个Json (太长进行了部分删减):
{
  "name": "test_cube",
  "model_name": "test_model",     // 使用名为 model_test 的数据模型
  "description": "",
  "null_string": null,
  "dimensions": [                 // 维度,可以来自事实表或维度表
    {
      "name": "PART_DT",
      "table": "KYLIN_SALES",
      "column": "PART_DT",
      "derived": null
    },
    {
      "name": "_MAX_",
      "function": {
        "expression": "MAX",
        "parameter": {
          "type": "column",
          "value": "KYLIN_SALES.PRICE"
        },
        "returntype": "decimal(19,4)"
      }
    }
  ],
  "dictionaries": [],
  "rowkey": {                 // rowkey 配置,主要关注维度列在 rowkey 中的位置(谁先谁后)
    "rowkey_columns": [
      {
        "column": "KYLIN_SALES.PART_DT",
        "encoding": "date",
        "encoding_version": 1,
        "isShardBy": false
      },
      {
        "column": "KYLIN_CAL_DT.CAL_DT",
        "encoding": "date",
        "encoding_version": 1,
        "isShardBy": false
      }
    ]
  },
  "hbase_mapping": {
    "column_family": [
      {
        "name": "F1",
        "columns": [
          {
            "qualifier": "M",
            "measure_refs": [
              "_COUNT_",
              "_SUM_",
              "_MAX_"
            ]
          }
        ]
      }
    ]
  },
  "aggregation_groups": [     // aggregation groups 配置,共两个 aggregation groups
    {
      "includes": [
        "KYLIN_SALES.PART_DT",
        "KYLIN_SALES.LEAF_CATEG_ID",
        "KYLIN_SALES.LSTG_SITE_ID",
        "KYLIN_SALES.SLR_SEGMENT_CD",
        "KYLIN_SALES.OPS_USER_ID",
        "KYLIN_CAL_DT.CAL_DT"
      ],
      "select_rule": {
        "hierarchy_dims": [],
        "mandatory_dims": [],
        "joint_dims": []
      }
    }
  ],
  "partition_date_start": 0,            // Cube 日期/时间 分区起始值
  "partition_date_end": 3153600000000,  // Cube 日期/时间 分区结束值
  "auto_merge_time_ranges": [           // 自动合并小的 segments 到中等甚至更大的 segment
    604800000,
    2419200000
  ],
  "retention_range": 0,                 // 不删除旧的 Cube Segment
  "engine_type": 4,                     // 构建 Cube 的引擎为 Spark
  "storage_type": 2,                    // 使用 Hbase 存储 Cube
  "override_kylin_properties": {},
  "cuboid_black_list": []
}

 

至此,已经对Kylin的整体原理有一个初步的理解。    

Kylin 的总体架构与特性

【CDN+】 Kylin 的初步认识与理解

上图是Kylin官网给出的总体架构图,比较通俗易懂,它有如下特性:   1. 可扩展超快的基于大数据的OLAP引擎:
  Kylin是为减少在Hadoop/Spark上百亿规模数据查询延迟而设计 2. 交互式查询能力:
  通过Kylin,用户可以与Hadoop数据进行亚秒级交互,在同样的数据集上提供比Hive更好的性能 3. 实时 OLAP:
  Kylin可以在数据产生时进行实时处理,用户可以在秒级延迟下进行实时数据的多维分析。 4. Hadoop ANSI SQL 接口:
  作为一个OLAP引擎,Kylin为Hadoop提供标准SQL支持大部分查询功能 5. 多维立方体(MOLAP Cube):
  用户能够在Kylin里为百亿以上数据集定义数据模型并构建立方体 6. 与BI工具无缝整合:
  Kylin提供与BI工具的整合能力,如Tableau,PowerBI/Excel,MSTR,QlikSense,Hue和SuperSet 7. 其他特性:
  • Job管理与监控
  • 压缩与编码
  • 增量更新
  • 利用HBase Coprocessor
  • 基于HyperLogLog的Dinstinc Count近似算法
  • 友好的web界面以管理,监控和使用立方体
  • 项目及表级别的访问控制安全
  • 支持LDAP、SSO
  进一步的学习有如下资料可参考: 1. Kylin的实操构建:http://kylin.apache.org/cn/docs15/tutorial/create_cube.html             https://www.jianshu.com/p/93dccb6b62c5   2. 本文参考了: https://www.jianshu.com/p/4f4417ef790a  

 

上一篇:页面旋转立方体图片


下一篇:unity小游戏制作教程