初学TensorFlow
不多说了直接粘代码
代码抄的,注释自己的理解,欢迎交流
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def normalize(X): """"Normalize the array""" mean = np.mean(X) std = np.std(X); X = (X-mean)/std return X boston = tf.contrib.learn.datasets.load_dataset("boston") # http://c.biancheng.net/view/1906.html boston = tf.contrib.learn.datasets.load_dataset('boston') #导入相关数据 X_train, Y_train = boston.data[:,5], boston.target#将数据样本进行赋值 n_samples = len(X_train) #读取训练集个数 X = tf.placeholder(tf.float32, name='X') #定义模型的变量 =====>模型 y = w * x + b Y = tf.placeholder(tf.float32, name='Y') b = tf.Variable(0.0) w = tf.Variable(0.0) #定义结束 Y_hat = X * w + b loss = tf.square(Y - Y_hat, name='loss') # 定义损失函数 optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(loss) #对损失函数求最优解,本过程也就是求解函数最优的关键运算 init_op = tf.global_variables_initializer() # 初始化 total = [] with tf.Session() as sess: # 采用with方法进行运算,将tf.Session()返回结果放在sess中 sess.run(init_op) #运行初始化 writer = tf.summary.FileWriter('graph', sess.graph) #生成运算记录文件,可以查看构建的算法 ===>查看方法:在命令行输入 D:\PythonProject\TensorFlow>tensorboard --logdir=graph ,graph 为Filewriter输入的参数 将返回的网址复制粘贴 for i in range(100): total_loss = 0 for x,y in zip(X_train,Y_train): _, l = sess.run([optimizer, loss], feed_dict = {X:x, Y:y}) # 计算的误差值 total_loss += l #这个是“L” 将返回的误差进行累加 total.append(total_loss / n_samples) # 不解释了 print('Epoch {0}:Loss{1}'.format(i, total_loss / n_samples)) writer.close() b_value, w_value = sess.run([b, w]) Y_pred = X_train * w_value + b_value print('Done') plt.plot(X_train, Y_train, 'bo',label='Real data') plt.plot(X_train, Y_pred, 'r', label='Predicted Data') plt.legend() plt.show() plt.plot(total) plt.show()