TensorFlow基本计算单元与基本操作

在学习深度学习等知识之前,首先得了解著名的框架TensorFlow里面的一些基础知识,下面首先看一下这个框架的一些基本用法。

import tensorflow as tf
a = 3  # Python中普通的变量创建方式

# Create a variable.
w = tf.Variable([[0.5, 1.0]]) # tensorflow创建变量方式
x = tf.Variable([[2.0], [1.0]])

y = tf.matmul(w, x) # 矩阵内积  变量的操作
print(y) # tensor  里面没有具体的值

# variables have to be explicitly initialized before you can run Ops
# 初始化全局变量 w,x,y
init_op = tf.global_variables_initializer()
# 计算图
with tf.Session() as sess:
    sess.run(init_op)
    print(y.eval()) # 通过这种方式打印具体的值

得到的结果是:

Tensor("MatMul_2:0", shape=(1, 1), dtype=float32)
[[2.]]

通过上面可以看出,只是简单的一个矩阵的乘法,我们就写了这么多的代码,看起来比较麻烦,但是没有办法,要用这个框架就必须按照它的用法去用,但是在用这个框架来写深度学习里面的代码,那就不是很复杂了。上面的代码展示了TensorFlow框架的基本用法,导入库、变量定义、初始化变量、Session操作、然后才能进行具体的操作。

下面学习一下TensorFlow框架中一些函数的用法,可以和numpy库中的一些函数对比着学习。

from numpy import int32
# float32 在TensorFlow最好使用这种格式

# 创建都是0的矩阵
tf.zeros([3, 4], int32)  # ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
# 矩阵格式相似
tf.zeros_like(tensor)  # ==> [[0, 0, 0], [0, 0, 0]]

# 矩阵元素都为1
tf.ones([2, 3], int32)  # ==> [[1, 1, 1], [1, 1, 1]]
tf.ones_like(tensor)  # ==> [[1, 1, 1], [1, 1, 1]]

# Constant 1-D Tensor populated with value list.
# 创建一个常量,必须使用这种方式
tensor = tf.constant([1, 2, 3, 4, 5, 6, 7])  # => [1 2 3 4 5 6 7]

# Constant 2-D tensor populated with scalar value -1.
# 创建二维矩阵常量
tensor = tf.constant(-1.0, shape=[2, 3])  # => [[-1. -1. -1.]
                                            #     [-1. -1. -1.]]

# 创建间隔矩阵
tf.linspace(10.0, 12.0, 3, name="linspace")  # => [ 10.0  11.0  12.0]

# 'start' is 3
# 'limit' is 18
# 'delta' is 3
# tf.range(start, limit, delta)  
tf.range(3, 18, 3)# ==> [3, 6, 9, 12, 15]

可以看出TensorFlow里面一些函数和numpy里面的用法差不多,下面看看TensorFlow中随机数的一些用法。

# 高斯分布的均值矩阵  指定均值和方差
norm = tf.random_normal([2, 3], mean=-1, stddev=4)

# Shuffle the first dimension of a tensor
c = tf.constant([[1, 2], [3, 4], [5, 6]])

# shuffle操作
shuff = tf.random_shuffle(c)

# Each time we run these ops, different results are generated
# 要执行这些操作的方法。推荐使用上面With结构
sess = tf.Session()
print(sess.run(norm))
print(sess.run(shuff))

运行得到的结果是

[[-2.4004993   5.356218    0.51297414]
 [-4.353016    2.234075   -4.2948236 ]]
[[1 2]
 [3 4]
 [5 6]]

下面来看一个使用TensorFlow完成打印0到4之间的数字这样的一个小栗子,在原生Python中很简单,主要看看在TensorFlow中的用法。

# 打印0到4之间的的值
state = tf.Variable(0) # 初始化常量0
new_value = tf.add(state, tf.constant(1)) # 执行加1操作
update = tf.assign(state, new_value)  # 将new_value赋给state

# Session计算块 
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(state))    
    for _ in range(3):
        sess.run(update)
        print(sess.run(state))

得到的结果是

0
1
2
3

下面再来看看在创建变量时将numpy里面的格式转换为tensor格式,但是并不推荐使用这种方法

import numpy as np
a = np.zeros((3,3))

# 将numpy里面的格式转换为tensor格式,并不推荐使用这种方法
# 推荐使用上面创建变量的方法
ta = tf.convert_to_tensor(a) 
with tf.Session() as sess:
     print(sess.run(ta))

得到的结果是

[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]

下面再来看看TensorFlow中占位符的用法

# 创建占位符,用的时候再具体赋值。
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1, input2) # 矩阵元素相乘
with tf.Session() as sess:
    print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))

得到的结果是

[array([14.], dtype=float32)]

总结,这篇博文包含了TensorFlow框架中一些常见的用法,但是肯定很多细节没有写全,只是写了一些大概的用法留作以后查看。

  

 

上一篇:多元线性回归—波士顿房价预测(改进版本)


下一篇:Tensorflow 细节P-40