1、彩色直方图
def ImgHist(image,type):
color = (255,255,255)
windowName='gray' if type==31:
color=(255,0,0)
windowName='B'
elif type==32:
color=(0,255,0)
windowName='G'
elif type==33:
color=(0,0,255)
windowName='R'
#[0]通道
hist=cv2.calcHist([image],[0],None,[256],[0.0,255.0])
minV,maxV,minL,maxL=cv2.minMaxLoc(hist)
print('minV,maxV,minL,maxL',minV,maxV,minL,maxL)
histImg=np.zeros([256,256,3],np.uint8)
for i in range(256):
intenNormal=int(hist[i]*256/maxV)
print(hist[i],hist[i]*256/maxV)
cv2.line(histImg,(i,256),(i,256-intenNormal),color)
cv2.imshow(windowName,histImg)
return histImg
img=cv2.imread('b.png',1)
channels=cv2.split(img)#RGB--->R G B
for i in range(3):
ImgHist(channels[i],31+i)
cv2.waitKey(0)
结果:
2、灰度化
img = cv2.imread('b.png',1)
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#原图
dst=cv2.equalizeHist(gray)#均衡化
cv2.imshow('dst',dst)
cv2.imshow('gray',gray)
cv2.waitKey(0)
结果:;
3、彩色
分别将各个通道进行均衡化,然后组合
img=cv2.imread('b.png',1)
b,g,r=cv2.split(img)
bH=cv2.equalizeHist(b)
gH=cv2.equalizeHist(g)
rH=cv2.equalizeHist(r)
dst=cv2.merge((bH,gH,rH))
cv2.imshow('dst',dst)
cv2.waitKey(0)
结果:
4、YUV 亮度与色度分离
imgyuv=cv2.cvtColor(img,cv2.COLOR_BGR2YCrCb)
channels=cv2.split(imgyuv)
channels[0]=cv2.equalizeHist(channels[0])
channels[1]=cv2.equalizeHist(channels[1])
channels[2]=cv2.equalizeHist(channels[2])
dst=cv2.merge(channels)#融合通道
cv2.imshow('dst',dst)
cv2.waitKey(0)
结果:
5、滤波(双边滤波,高斯滤波)
# 2 双边滤波器
cv2.imshow('src',img)
dst=cv2.bilateralFilter(img,100,200,160)
cv2.imshow('shangbian',dst)
# cv2.waitKey(0)
# 高斯中值滤波
dst=np.zeros(img.shape,np.uint8)
height=img.shape[0]
width=img.shape[1]
for i in range(3,height-3):
for j in range(3,width-3):
sum_b=int(0)
sum_g=int(0)
sum_r=int(0)
for m in range(-3,3):
for n in range(-3,3):
(b,g,r)=img[i+m,j+n]
sum_b=sum_b+int(b)
sum_g=sum_g+int(g)
sum_r=sum_r+int(r)
b=np.uint8(sum_b/36)
g=np.uint8(sum_g/36)
r=np.uint8(sum_r/36)
dst[i,j]=(b,g,r)
cv2.imshow('gaosi',dst)
cv2.waitKey(0)
结果: