The kernel’s command-line parameters
The following is a consolidated list of the kernel parameters as implemented by the __setup(), early_param(), core_param() and module_param() macros and sorted into English Dictionary order (defined as ignoring all punctuation and sorting digits before letters in a case insensitive manner), and with descriptions where known.
The kernel parses parameters from the kernel command line up to “--
“; if it doesn’t recognize a parameter and it doesn’t contain a ‘.’, the parameter gets passed to init: parameters with ‘=’ go into init’s environment, others are passed as command line arguments to init. Everything after “--
” is passed as an argument to init.
Module parameters can be specified in two ways: via the kernel command line with a module name prefix, or via modprobe, e.g.:
(kernel command line) usbcore.blinkenlights=1 (modprobe command line) modprobe usbcore blinkenlights=1
Parameters for modules which are built into the kernel need to be specified on the kernel command line. modprobe looks through the kernel command line (/proc/cmdline) and collects module parameters when it loads a module, so the kernel command line can be used for loadable modules too.
Hyphens (dashes) and underscores are equivalent in parameter names, so:
log_buf_len=1M print-fatal-signals=1
can also be entered as:
log-buf-len=1M print_fatal_signals=1
Double-quotes can be used to protect spaces in values, e.g.:
param="spaces in here"
cpu lists:
Some kernel parameters take a list of CPUs as a value, e.g. isolcpus, nohz_full, irqaffinity, rcu_nocbs. The format of this list is:
<cpu number>,…,<cpu number>
or
<cpu number>-<cpu number> (must be a positive range in ascending order)
or a mixture
<cpu number>,…,<cpu number>-<cpu number>
Note that for the special case of a range one can split the range into equal sized groups and for each group use some amount from the beginning of that group:
<cpu number>-<cpu number>:<used size>/<group size>
For example one can add to the command line following parameter:
isolcpus=1,2,10-20,100-2000:2/25
where the final item represents CPUs 100,101,125,126,150,151,…
This document may not be entirely up to date and comprehensive. The command “modinfo -p ${modulename}” shows a current list of all parameters of a loadable module. Loadable modules, after being loaded into the running kernel, also reveal their parameters in /sys/module/${modulename}/parameters/. Some of these parameters may be changed at runtime by the command echo -n ${value} > /sys/module/${modulename}/parameters/${parm}
.
The parameters listed below are only valid if certain kernel build options were enabled and if respective hardware is present. The text in square brackets at the beginning of each description states the restrictions within which a parameter is applicable:
ACPI ACPI support is enabled. AGP AGP (Accelerated Graphics Port) is enabled. ALSA ALSA sound support is enabled. APIC APIC support is enabled. APM Advanced Power Management support is enabled. ARM ARM architecture is enabled. ARM64 ARM64 architecture is enabled. AX25 Appropriate AX.25 support is enabled. CLK Common clock infrastructure is enabled. CMA Contiguous Memory Area support is enabled. DRM Direct Rendering Management support is enabled. DYNAMIC_DEBUG Build in debug messages and enable them at runtime EDD BIOS Enhanced Disk Drive Services (EDD) is enabled EFI EFI Partitioning (GPT) is enabled EIDE EIDE/ATAPI support is enabled. EVM Extended Verification Module FB The frame buffer device is enabled. FTRACE Function tracing enabled. GCOV GCOV profiling is enabled. HW Appropriate hardware is enabled. IA-64 IA-64 architecture is enabled. IMA Integrity measurement architecture is enabled. IOSCHED More than one I/O scheduler is enabled. IP_PNP IP DHCP, BOOTP, or RARP is enabled. IPV6 IPv6 support is enabled. ISAPNP ISA PnP code is enabled. ISDN Appropriate ISDN support is enabled. ISOL CPU Isolation is enabled. JOY Appropriate joystick support is enabled. KGDB Kernel debugger support is enabled. KVM Kernel Virtual Machine support is enabled. LIBATA Libata driver is enabled LP Printer support is enabled. LOOP Loopback device support is enabled. M68k M68k architecture is enabled. These options have more detailed description inside of Documentation/m68k/kernel-options.rst. MDA MDA console support is enabled. MIPS MIPS architecture is enabled. MOUSE Appropriate mouse support is enabled. MSI Message Signaled Interrupts (PCI). MTD MTD (Memory Technology Device) support is enabled. NET Appropriate network support is enabled. NUMA NUMA support is enabled. NFS Appropriate NFS support is enabled. OF Devicetree is enabled. OSS OSS sound support is enabled. PV_OPS A paravirtualized kernel is enabled. PARIDE The ParIDE (parallel port IDE) subsystem is enabled. PARISC The PA-RISC architecture is enabled. PCI PCI bus support is enabled. PCIE PCI Express support is enabled. PCMCIA The PCMCIA subsystem is enabled. PNP Plug & Play support is enabled. PPC PowerPC architecture is enabled. PPT Parallel port support is enabled. PS2 Appropriate PS/2 support is enabled. RAM RAM disk support is enabled. RDT Intel Resource Director Technology. S390 S390 architecture is enabled. SCSI Appropriate SCSI support is enabled. A lot of drivers have their options described inside the Documentation/scsi/ sub-directory. SECURITY Different security models are enabled. SELINUX SELinux support is enabled. APPARMOR AppArmor support is enabled. SERIAL Serial support is enabled. SH SuperH architecture is enabled. SMP The kernel is an SMP kernel. SPARC Sparc architecture is enabled. SWSUSP Software suspend (hibernation) is enabled. SUSPEND System suspend states are enabled. TPM TPM drivers are enabled. TS Appropriate touchscreen support is enabled. UMS USB Mass Storage support is enabled. USB USB support is enabled. USBHID USB Human Interface Device support is enabled. V4L Video For Linux support is enabled. VMMIO Driver for memory mapped virtio devices is enabled. VGA The VGA console has been enabled. VT Virtual terminal support is enabled. WDT Watchdog support is enabled. XT IBM PC/XT MFM hard disk support is enabled. X86-32 X86-32, aka i386 architecture is enabled. X86-64 X86-64 architecture is enabled. More X86-64 boot options can be found in Documentation/x86/x86_64/boot-options.rst. X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64) X86_UV SGI UV support is enabled. XEN Xen support is enabled XTENSA xtensa architecture is enabled.
In addition, the following text indicates that the option:
BUGS= Relates to possible processor bugs on the said processor. KNL Is a kernel start-up parameter. BOOT Is a boot loader parameter.
Parameters denoted with BOOT are actually interpreted by the boot loader, and have no meaning to the kernel directly. Do not modify the syntax of boot loader parameters without extreme need or coordination with <The Linux/x86 Boot Protocol>.
There are also arch-specific kernel-parameters not documented here. See for example <AMD64 Specific Boot Options>.
Note that ALL kernel parameters listed below are CASE SENSITIVE, and that a trailing = on the name of any parameter states that that parameter will be entered as an environment variable, whereas its absence indicates that it will appear as a kernel argument readable via /proc/cmdline by programs running once the system is up.
The number of kernel parameters is not limited, but the length of the complete command line (parameters including spaces etc.) is limited to a fixed number of characters. This limit depends on the architecture and is between 256 and 4096 characters. It is defined in the file ./include/asm/setup.h as COMMAND_LINE_SIZE.
Finally, the [KMG] suffix is commonly described after a number of kernel parameter values. These ‘K’, ‘M’, and ‘G’ letters represent the _binary_ multipliers ‘Kilo’, ‘Mega’, and ‘Giga’, equaling 2^10, 2^20, and 2^30 bytes respectively. Such letter suffixes can also be entirely omitted:
acpi= [HW,ACPI,X86,ARM64] Advanced Configuration and Power Interface Format: { force | on | off | strict | noirq | rsdt | copy_dsdt } force -- enable ACPI if default was off on -- enable ACPI but allow fallback to DT [arm64] off -- disable ACPI if default was on noirq -- do not use ACPI for IRQ routing strict -- Be less tolerant of platforms that are not strictly ACPI specification compliant. rsdt -- prefer RSDT over (default) XSDT copy_dsdt -- copy DSDT to memory For ARM64, ONLY "acpi=off", "acpi=on" or "acpi=force" are available See also Documentation/power/runtime_pm.rst, pci=noacpi acpi_apic_instance= [ACPI, IOAPIC] Format: <int> 2: use 2nd APIC table, if available 1,0: use 1st APIC table default: 0 acpi_backlight= [HW,ACPI] { vendor | video | native | none } If set to vendor, prefer vendor-specific driver (e.g. thinkpad_acpi, sony_acpi, etc.) instead of the ACPI video.ko driver. If set to video, use the ACPI video.ko driver. If set to native, use the device's native backlight mode. If set to none, disable the ACPI backlight interface. acpi_force_32bit_fadt_addr force FADT to use 32 bit addresses rather than the 64 bit X_* addresses. Some firmware have broken 64 bit addresses for force ACPI ignore these and use the older legacy 32 bit addresses. acpica_no_return_repair [HW, ACPI] Disable AML predefined validation mechanism This mechanism can repair the evaluation result to make the return objects more ACPI specification compliant. This option is useful for developers to identify the root cause of an AML interpreter issue when the issue has something to do with the repair mechanism. acpi.debug_layer= [HW,ACPI,ACPI_DEBUG] acpi.debug_level= [HW,ACPI,ACPI_DEBUG] Format: <int> CONFIG_ACPI_DEBUG must be enabled to produce any ACPI debug output. Bits in debug_layer correspond to a _COMPONENT in an ACPI source file, e.g., #define _COMPONENT ACPI_PCI_COMPONENT Bits in debug_level correspond to a level in ACPI_DEBUG_PRINT statements, e.g., ACPI_DEBUG_PRINT((ACPI_DB_INFO, ... The debug_level mask defaults to "info". See Documentation/firmware-guide/acpi/debug.rst for more information about debug layers and levels. Enable processor driver info messages: acpi.debug_layer=0x20000000 Enable PCI/PCI interrupt routing info messages: acpi.debug_layer=0x400000 Enable AML "Debug" output, i.e., stores to the Debug object while interpreting AML: acpi.debug_layer=0xffffffff acpi.debug_level=0x2 Enable all messages related to ACPI hardware: acpi.debug_layer=0x2 acpi.debug_level=0xffffffff Some values produce so much output that the system is unusable. The "log_buf_len" parameter may be useful if you need to capture more output. acpi_enforce_resources= [ACPI] { strict | lax | no } Check for resource conflicts between native drivers and ACPI OperationRegions (SystemIO and SystemMemory only). IO ports and memory declared in ACPI might be used by the ACPI subsystem in arbitrary AML code and can interfere with legacy drivers. strict (default): access to resources claimed by ACPI is denied; legacy drivers trying to access reserved resources will fail to bind to device using them. lax: access to resources claimed by ACPI is allowed; legacy drivers trying to access reserved resources will bind successfully but a warning message is logged. no: ACPI OperationRegions are not marked as reserved, no further checks are performed. acpi_force_table_verification [HW,ACPI] Enable table checksum verification during early stage. By default, this is disabled due to x86 early mapping size limitation. acpi_irq_balance [HW,ACPI] ACPI will balance active IRQs default in APIC mode acpi_irq_nobalance [HW,ACPI] ACPI will not move active IRQs (default) default in PIC mode acpi_irq_isa= [HW,ACPI] If irq_balance, mark listed IRQs used by ISA Format: <irq>,<irq>... acpi_irq_pci= [HW,ACPI] If irq_balance, clear listed IRQs for use by PCI Format: <irq>,<irq>... acpi_mask_gpe= [HW,ACPI] Due to the existence of _Lxx/_Exx, some GPEs triggered by unsupported hardware/firmware features can result in GPE floodings that cannot be automatically disabled by the GPE dispatcher. This facility can be used to prevent such uncontrolled GPE floodings. Format: <byte> acpi_no_auto_serialize [HW,ACPI] Disable auto-serialization of AML methods AML control methods that contain the opcodes to create named objects will be marked as "Serialized" by the auto-serialization feature. This feature is enabled by default. This option allows to turn off the feature. acpi_no_memhotplug [ACPI] Disable memory hotplug. Useful for kdump kernels. acpi_no_static_ssdt [HW,ACPI] Disable installation of static SSDTs at early boot time By default, SSDTs contained in the RSDT/XSDT will be installed automatically and they will appear under /sys/firmware/acpi/tables. This option turns off this feature. Note that specifying this option does not affect dynamic table installation which will install SSDT tables to /sys/firmware/acpi/tables/dynamic. acpi_no_watchdog [HW,ACPI,WDT] Ignore the ACPI-based watchdog interface (WDAT) and let a native driver control the watchdog device instead. acpi_rsdp= [ACPI,EFI,KEXEC] Pass the RSDP address to the kernel, mostly used on machines running EFI runtime service to boot the second kernel for kdump. acpi_os_name= [HW,ACPI] Tell ACPI BIOS the name of the OS Format: To spoof as Windows 98: ="Microsoft Windows" acpi_rev_override [ACPI] Override the _REV object to return 5 (instead of 2 which is mandated by ACPI 6) as the supported ACPI specification revision (when using this switch, it may be necessary to carry out a cold reboot _twice_ in a row to make it take effect on the platform firmware). acpi_osi= [HW,ACPI] Modify list of supported OS interface strings acpi_osi="string1" # add string1 acpi_osi="!string2" # remove string2 acpi_osi=!* # remove all strings acpi_osi=! # disable all built-in OS vendor strings acpi_osi=!! # enable all built-in OS vendor strings acpi_osi= # disable all strings 'acpi_osi=!' can be used in combination with single or multiple 'acpi_osi="string1"' to support specific OS vendor string(s). Note that such command can only affect the default state of the OS vendor strings, thus it cannot affect the default state of the feature group strings and the current state of the OS vendor strings, specifying it multiple times through kernel command line is meaningless. This command is useful when one do not care about the state of the feature group strings which should be controlled by the OSPM. Examples: 1. 'acpi_osi=! acpi_osi="Windows 2000"' is equivalent to 'acpi_osi="Windows 2000" acpi_osi=!', they all can make '_OSI("Windows 2000")' TRUE. 'acpi_osi=' cannot be used in combination with other 'acpi_osi=' command lines, the _OSI method will not exist in the ACPI namespace. NOTE that such command can only affect the _OSI support state, thus specifying it multiple times through kernel command line is also meaningless. Examples: 1. 'acpi_osi=' can make 'CondRefOf(_OSI, Local1)' FALSE. 'acpi_osi=!*' can be used in combination with single or multiple 'acpi_osi="string1"' to support specific string(s). Note that such command can affect the current state of both the OS vendor strings and the feature group strings, thus specifying it multiple times through kernel command line is meaningful. But it may still not able to affect the final state of a string if there are quirks related to this string. This command is useful when one want to control the state of the feature group strings to debug BIOS issues related to the OSPM features. Examples: 1. 'acpi_osi="Module Device" acpi_osi=!*' can make '_OSI("Module Device")' FALSE. 2. 'acpi_osi=!* acpi_osi="Module Device"' can make '_OSI("Module Device")' TRUE. 3. 'acpi_osi=! acpi_osi=!* acpi_osi="Windows 2000"' is equivalent to 'acpi_osi=!* acpi_osi=! acpi_osi="Windows 2000"' and 'acpi_osi=!* acpi_osi="Windows 2000" acpi_osi=!', they all will make '_OSI("Windows 2000")' TRUE. acpi_pm_good [X86] Override the pmtimer bug detection: force the kernel to assume that this machine's pmtimer latches its value and always returns good values. acpi_sci= [HW,ACPI] ACPI System Control Interrupt trigger mode Format: { level | edge | high | low } acpi_skip_timer_override [HW,ACPI] Recognize and ignore IRQ0/pin2 Interrupt Override. For broken nForce2 BIOS resulting in XT-PIC timer. acpi_sleep= [HW,ACPI] Sleep options Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig, old_ordering, nonvs, sci_force_enable, nobl } See Documentation/power/video.rst for information on s3_bios and s3_mode. s3_beep is for debugging; it makes the PC's speaker beep as soon as the kernel's real-mode entry point is called. s4_nohwsig prevents ACPI hardware signature from being used during resume from hibernation. old_ordering causes the ACPI 1.0 ordering of the _PTS control method, with respect to putting devices into low power states, to be enforced (the ACPI 2.0 ordering of _PTS is used by default). nonvs prevents the kernel from saving/restoring the ACPI NVS memory during suspend/hibernation and resume. sci_force_enable causes the kernel to set SCI_EN directly on resume from S1/S3 (which is against the ACPI spec, but some broken systems don't work without it). nobl causes the internal blacklist of systems known to behave incorrectly in some ways with respect to system suspend and resume to be ignored (use wisely). acpi_use_timer_override [HW,ACPI] Use timer override. For some broken Nvidia NF5 boards that require a timer override, but don't have HPET add_efi_memmap [EFI; X86] Include EFI memory map in kernel's map of available physical RAM. agp= [AGP] { off | try_unsupported } off: disable AGP support try_unsupported: try to drive unsupported chipsets (may crash computer or cause data corruption) ALSA [HW,ALSA] See Documentation/sound/alsa-configuration.rst alignment= [KNL,ARM] Allow the default userspace alignment fault handler behaviour to be specified. Bit 0 enables warnings, bit 1 enables fixups, and bit 2 sends a segfault. align_va_addr= [X86-64] Align virtual addresses by clearing slice [14:12] when allocating a VMA at process creation time. This option gives you up to 3% performance improvement on AMD F15h machines (where it is enabled by default) for a CPU-intensive style benchmark, and it can vary highly in a microbenchmark depending on workload and compiler. 32: only for 32-bit processes 64: only for 64-bit processes on: enable for both 32- and 64-bit processes off: disable for both 32- and 64-bit processes alloc_snapshot [FTRACE] Allocate the ftrace snapshot buffer on boot up when the main buffer is allocated. This is handy if debugging and you need to use tracing_snapshot() on boot up, and do not want to use tracing_snapshot_alloc() as it needs to be done where GFP_KERNEL allocations are allowed. amd_iommu= [HW,X86-64] Pass parameters to the AMD IOMMU driver in the system. Possible values are: fullflush - enable flushing of IO/TLB entries when they are unmapped. Otherwise they are flushed before they will be reused, which is a lot of faster off - do not initialize any AMD IOMMU found in the system force_isolation - Force device isolation for all devices. The IOMMU driver is not allowed anymore to lift isolation requirements as needed. This option does not override iommu=pt amd_iommu_dump= [HW,X86-64] Enable AMD IOMMU driver option to dump the ACPI table for AMD IOMMU. With this option enabled, AMD IOMMU driver will print ACPI tables for AMD IOMMU during IOMMU initialization. amd_iommu_intr= [HW,X86-64] Specifies one of the following AMD IOMMU interrupt remapping modes: legacy - Use legacy interrupt remapping mode. vapic - Use virtual APIC mode, which allows IOMMU to inject interrupts directly into guest. This mode requires kvm-amd.avic=1. (Default when IOMMU HW support is present.) amijoy.map= [HW,JOY] Amiga joystick support Map of devices attached to JOY0DAT and JOY1DAT Format: <a>,<b> See also Documentation/input/joydev/joystick.rst analog.map= [HW,JOY] Analog joystick and gamepad support Specifies type or capabilities of an analog joystick connected to one of 16 gameports Format: <type1>,<type2>,..<type16> apc= [HW,SPARC] Power management functions (SPARCstation-4/5 + deriv.) Format: noidle Disable APC CPU standby support. SPARCstation-Fox does not play well with APC CPU idle - disable it if you have APC and your system crashes randomly. apic= [APIC,X86] Advanced Programmable Interrupt Controller Change the output verbosity while booting Format: { quiet (default) | verbose | debug } Change the amount of debugging information output when initialising the APIC and IO-APIC components. For X86-32, this can also be used to specify an APIC driver name. Format: apic=driver_name Examples: apic=bigsmp apic_extnmi= [APIC,X86] External NMI delivery setting Format: { bsp (default) | all | none } bsp: External NMI is delivered only to CPU 0 all: External NMIs are broadcast to all CPUs as a backup of CPU 0 none: External NMI is masked for all CPUs. This is useful so that a dump capture kernel won't be shot down by NMI autoconf= [IPV6] See Documentation/networking/ipv6.rst. show_lapic= [APIC,X86] Advanced Programmable Interrupt Controller Limit apic dumping. The parameter defines the maximal number of local apics being dumped. Also it is possible to set it to "all" by meaning -- no limit here. Format: { 1 (default) | 2 | ... | all }. The parameter valid if only apic=debug or apic=verbose is specified. Example: apic=debug show_lapic=all apm= [APM] Advanced Power Management See header of arch/x86/kernel/apm_32.c. arcrimi= [HW,NET] ARCnet - "RIM I" (entirely mem-mapped) cards Format: <io>,<irq>,<nodeID> arm64.nobti [ARM64] Unconditionally disable Branch Target Identification support arm64.nopauth [ARM64] Unconditionally disable Pointer Authentication support ataflop= [HW,M68k] atarimouse= [HW,MOUSE] Atari Mouse atkbd.extra= [HW] Enable extra LEDs and keys on IBM RapidAccess, EzKey and similar keyboards atkbd.reset= [HW] Reset keyboard during initialization atkbd.set= [HW] Select keyboard code set Format: <int> (2 = AT (default), 3 = PS/2) atkbd.scroll= [HW] Enable scroll wheel on MS Office and similar keyboards atkbd.softraw= [HW] Choose between synthetic and real raw mode Format: <bool> (0 = real, 1 = synthetic (default)) atkbd.softrepeat= [HW] Use software keyboard repeat audit= [KNL] Enable the audit sub-system Format: { "0" | "1" | "off" | "on" } 0 | off - kernel audit is disabled and can not be enabled until the next reboot unset - kernel audit is initialized but disabled and will be fully enabled by the userspace auditd. 1 | on - kernel audit is initialized and partially enabled, storing at most audit_backlog_limit messages in RAM until it is fully enabled by the userspace auditd. Default: unset audit_backlog_limit= [KNL] Set the audit queue size limit. Format: <int> (must be >=0) Default: 64 bau= [X86_UV] Enable the BAU on SGI UV. The default behavior is to disable the BAU (i.e. bau=0). Format: { "0" | "1" } 0 - Disable the BAU. 1 - Enable the BAU. unset - Disable the BAU. baycom_epp= [HW,AX25] Format: <io>,<mode> baycom_par= [HW,AX25] BayCom Parallel Port AX.25 Modem Format: <io>,<mode> See header of drivers/net/hamradio/baycom_par.c. baycom_ser_fdx= [HW,AX25] BayCom Serial Port AX.25 Modem (Full Duplex Mode) Format: <io>,<irq>,<mode>[,<baud>] See header of drivers/net/hamradio/baycom_ser_fdx.c. baycom_ser_hdx= [HW,AX25] BayCom Serial Port AX.25 Modem (Half Duplex Mode) Format: <io>,<irq>,<mode> See header of drivers/net/hamradio/baycom_ser_hdx.c. blkdevparts= Manual partition parsing of block device(s) for embedded devices based on command line input. See Documentation/block/cmdline-partition.rst boot_delay= Milliseconds to delay each printk during boot. Values larger than 10 seconds (10000) are changed to no delay (0). Format: integer bootconfig [KNL] Extended command line options can be added to an initrd and this will cause the kernel to look for it. See Documentation/admin-guide/bootconfig.rst bert_disable [ACPI] Disable BERT OS support on buggy BIOSes. bgrt_disable [ACPI][X86] Disable BGRT to avoid flickering OEM logo. bttv.card= [HW,V4L] bttv (bt848 + bt878 based grabber cards) bttv.radio= Most important insmod options are available as kernel args too. bttv.pll= See Documentation/admin-guide/media/bttv.rst bttv.tuner= bulk_remove=off [PPC] This parameter disables the use of the pSeries firmware feature for flushing multiple hpte entries at a time. c101= [NET] Moxa C101 synchronous serial card cachesize= [BUGS=X86-32] Override level 2 CPU cache size detection. Sometimes CPU hardware bugs make them report the cache size incorrectly. The kernel will attempt work arounds to fix known problems, but for some CPUs it is not possible to determine what the correct size should be. This option provides an override for these situations. carrier_timeout= [NET] Specifies amount of time (in seconds) that the kernel should wait for a network carrier. By default it waits 120 seconds. ca_keys= [KEYS] This parameter identifies a specific key(s) on the system trusted keyring to be used for certificate trust validation. format: { id:<keyid> | builtin } cca= [MIPS] Override the kernel pages' cache coherency algorithm. Accepted values range from 0 to 7 inclusive. See arch/mips/include/asm/pgtable-bits.h for platform specific values (SB1, Loongson3 and others). ccw_timeout_log [S390] See Documentation/s390/common_io.rst for details. cgroup_disable= [KNL] Disable a particular controller Format: {name of the controller(s) to disable} The effects of cgroup_disable=foo are: - foo isn't auto-mounted if you mount all cgroups in a single hierarchy - foo isn't visible as an individually mountable subsystem {Currently only "memory" controller deal with this and cut the overhead, others just disable the usage. So only cgroup_disable=memory is actually worthy} cgroup_no_v1= [KNL] Disable cgroup controllers and named hierarchies in v1 Format: { { controller | "all" | "named" } [,{ controller | "all" | "named" }...] } Like cgroup_disable, but only applies to cgroup v1; the blacklisted controllers remain available in cgroup2. "all" blacklists all controllers and "named" disables named mounts. Specifying both "all" and "named" disables all v1 hierarchies. cgroup.memory= [KNL] Pass options to the cgroup memory controller. Format: <string> nosocket -- Disable socket memory accounting. nokmem -- Disable kernel memory accounting. checkreqprot [SELINUX] Set initial checkreqprot flag value. Format: { "0" | "1" } See security/selinux/Kconfig help text. 0 -- check protection applied by kernel (includes any implied execute protection). 1 -- check protection requested by application. Default value is set via a kernel config option. Value can be changed at runtime via /sys/fs/selinux/checkreqprot. Setting checkreqprot to 1 is deprecated. cio_ignore= [S390] See Documentation/s390/common_io.rst for details. clk_ignore_unused [CLK] Prevents the clock framework from automatically gating clocks that have not been explicitly enabled by a Linux device driver but are enabled in hardware at reset or by the bootloader/firmware. Note that this does not force such clocks to be always-on nor does it reserve those clocks in any way. This parameter is useful for debug and development, but should not be needed on a platform with proper driver support. For more information, see Documentation/driver-api/clk.rst. clock= [BUGS=X86-32, HW] gettimeofday clocksource override. [Deprecated] Forces specified clocksource (if available) to be used when calculating gettimeofday(). If specified clocksource is not available, it defaults to PIT. Format: { pit | tsc | cyclone | pmtmr } clocksource= Override the default clocksource Format: <string> Override the default clocksource and use the clocksource with the name specified. Some clocksource names to choose from, depending on the platform: [all] jiffies (this is the base, fallback clocksource) [ACPI] acpi_pm [ARM] imx_timer1,OSTS,netx_timer,mpu_timer2, pxa_timer,timer3,32k_counter,timer0_1 [X86-32] pit,hpet,tsc; scx200_hrt on Geode; cyclone on IBM x440 [MIPS] MIPS [PARISC] cr16 [S390] tod [SH] SuperH [SPARC64] tick [X86-64] hpet,tsc clocksource.arm_arch_timer.evtstrm= [ARM,ARM64] Format: <bool> Enable/disable the eventstream feature of the ARM architected timer so that code using WFE-based polling loops can be debugged more effectively on production systems. clearcpuid=BITNUM[,BITNUM...] [X86] Disable CPUID feature X for the kernel. See arch/x86/include/asm/cpufeatures.h for the valid bit numbers. Note the Linux specific bits are not necessarily stable over kernel options, but the vendor specific ones should be. Also note that user programs calling CPUID directly or using the feature without checking anything will still see it. This just prevents it from being used by the kernel or shown in /proc/cpuinfo. Also note the kernel might malfunction if you disable some critical bits. cma=nn[MG]@[start[MG][-end[MG]]] [KNL,CMA] Sets the size of kernel global memory area for contiguous memory allocations and optionally the placement constraint by the physical address range of memory allocations. A value of 0 disables CMA altogether. For more information, see kernel/dma/contiguous.c cma_pernuma=nn[MG] [ARM64,KNL,CMA] Sets the size of kernel per-numa memory area for contiguous memory allocations. A value of 0 disables per-numa CMA altogether. And If this option is not specificed, the default value is 0. With per-numa CMA enabled, DMA users on node nid will first try to allocate buffer from the pernuma area which is located in node nid, if the allocation fails, they will fallback to the global default memory area. cmo_free_hint= [PPC] Format: { yes | no } Specify whether pages are marked as being inactive when they are freed. This is used in CMO environments to determine OS memory pressure for page stealing by a hypervisor. Default: yes coherent_pool=nn[KMG] [ARM,KNL] Sets the size of memory pool for coherent, atomic dma allocations, by default set to 256K. com20020= [HW,NET] ARCnet - COM20020 chipset Format: <io>[,<irq>[,<nodeID>[,<backplane>[,<ckp>[,<timeout>]]]]] com90io= [HW,NET] ARCnet - COM90xx chipset (IO-mapped buffers) Format: <io>[,<irq>] com90xx= [HW,NET] ARCnet - COM90xx chipset (memory-mapped buffers) Format: <io>[,<irq>[,<memstart>]] condev= [HW,S390] console device conmode= console= [KNL] Output console device and options. tty<n> Use the virtual console device <n>. ttyS<n>[,options] ttyUSB0[,options] Use the specified serial port. The options are of the form "bbbbpnf", where "bbbb" is the baud rate, "p" is parity ("n", "o", or "e"), "n" is number of bits, and "f" is flow control ("r" for RTS or omit it). Default is "9600n8". See Documentation/admin-guide/serial-console.rst for more information. See Documentation/networking/netconsole.rst for an alternative. uart[8250],io,<addr>[,options] uart[8250],mmio,<addr>[,options] uart[8250],mmio16,<addr>[,options] uart[8250],mmio32,<addr>[,options] uart[8250],0x<addr>[,options] Start an early, polled-mode console on the 8250/16550 UART at the specified I/O port or MMIO address, switching to the matching ttyS device later. MMIO inter-register address stride is either 8-bit (mmio), 16-bit (mmio16), or 32-bit (mmio32). If none of [io|mmio|mmio16|mmio32], <addr> is assumed to be equivalent to 'mmio'. 'options' are specified in the same format described for ttyS above; if unspecified, the h/w is not re-initialized. hvc<n> Use the hypervisor console device <n>. This is for both Xen and PowerPC hypervisors. If the device connected to the port is not a TTY but a braille device, prepend "brl," before the device type, for instance console=brl,ttyS0 For now, only VisioBraille is supported. console_msg_format= [KNL] Change console messages format default By default we print messages on consoles in "[time stamp] text\n" format (time stamp may not be printed, depending on CONFIG_PRINTK_TIME or `printk_time' param). syslog Switch to syslog format: "<%u>[time stamp] text\n" IOW, each message will have a facility and loglevel prefix. The format is similar to one used by syslog() syscall, or to executing "dmesg -S --raw" or to reading from /proc/kmsg. consoleblank= [KNL] The console blank (screen saver) timeout in seconds. A value of 0 disables the blank timer. Defaults to 0. coredump_filter= [KNL] Change the default value for /proc/<pid>/coredump_filter. See also Documentation/filesystems/proc.rst. coresight_cpu_debug.enable [ARM,ARM64] Format: <bool> Enable/disable the CPU sampling based debugging. 0: default value, disable debugging 1: enable debugging at boot time cpuidle.off=1 [CPU_IDLE] disable the cpuidle sub-system cpuidle.governor= [CPU_IDLE] Name of the cpuidle governor to use. cpufreq.off=1 [CPU_FREQ] disable the cpufreq sub-system cpufreq.default_governor= [CPU_FREQ] Name of the default cpufreq governor or policy to use. This governor must be registered in the kernel before the cpufreq driver probes. cpu_init_udelay=N [X86] Delay for N microsec between assert and de-assert of APIC INIT to start processors. This delay occurs on every CPU online, such as boot, and resume from suspend. Default: 10000 cpcihp_generic= [HW,PCI] Generic port I/O CompactPCI driver Format: <first_slot>,<last_slot>,<port>,<enum_bit>[,<debug>] crashkernel=size[KMG][@offset[KMG]] [KNL] Using kexec, Linux can switch to a 'crash kernel' upon panic. This parameter reserves the physical memory region [offset, offset + size] for that kernel image. If '@offset' is omitted, then a suitable offset is selected automatically. [KNL, X86-64] Select a region under 4G first, and fall back to reserve region above 4G when '@offset' hasn't been specified. See Documentation/admin-guide/kdump/kdump.rst for further details. crashkernel=range1:size1[,range2:size2,...][@offset] [KNL] Same as above, but depends on the memory in the running system. The syntax of range is start-[end] where start and end are both a memory unit (amount[KMG]). See also Documentation/admin-guide/kdump/kdump.rst for an example. crashkernel=size[KMG],high [KNL, X86-64] range could be above 4G. Allow kernel to allocate physical memory region from top, so could be above 4G if system have more than 4G ram installed. Otherwise memory region will be allocated below 4G, if available. It will be ignored if crashkernel=X is specified. crashkernel=size[KMG],low [KNL, X86-64] range under 4G. When crashkernel=X,high is passed, kernel could allocate physical memory region above 4G, that cause second kernel crash on system that require some amount of low memory, e.g. swiotlb requires at least 64M+32K low memory, also enough extra low memory is needed to make sure DMA buffers for 32-bit devices won't run out. Kernel would try to allocate at at least 256M below 4G automatically. This one let user to specify own low range under 4G for second kernel instead. 0: to disable low allocation. It will be ignored when crashkernel=X,high is not used or memory reserved is below 4G. cryptomgr.notests [KNL] Disable crypto self-tests cs89x0_dma= [HW,NET] Format: <dma> cs89x0_media= [HW,NET] Format: { rj45 | aui | bnc } dasd= [HW,NET] See header of drivers/s390/block/dasd_devmap.c. db9.dev[2|3]= [HW,JOY] Multisystem joystick support via parallel port (one device per port) Format: <port#>,<type> See also Documentation/input/devices/joystick-parport.rst ddebug_query= [KNL,DYNAMIC_DEBUG] Enable debug messages at early boot time. See Documentation/admin-guide/dynamic-debug-howto.rst for details. Deprecated, see dyndbg. debug [KNL] Enable kernel debugging (events log level). debug_boot_weak_hash [KNL] Enable printing [hashed] pointers early in the boot sequence. If enabled, we use a weak hash instead of siphash to hash pointers. Use this option if you are seeing instances of '(___ptrval___)') and need to see a value (hashed pointer) instead. Cryptographically insecure, please do not use on production kernels. debug_locks_verbose= [KNL] verbose locking self-tests Format: <int> Print debugging info while doing the locking API self-tests. Bitmask for the various LOCKTYPE_ tests. Defaults to 0 (no extra messages), setting it to -1 (all bits set) will print _a_lot_ more information - normally only useful to lockdep developers. debug_objects [KNL] Enable object debugging no_debug_objects [KNL] Disable object debugging debug_guardpage_minorder= [KNL] When CONFIG_DEBUG_PAGEALLOC is set, this parameter allows control of the order of pages that will be intentionally kept free (and hence protected) by the buddy allocator. Bigger value increase the probability of catching random memory corruption, but reduce the amount of memory for normal system use. The maximum possible value is MAX_ORDER/2. Setting this parameter to 1 or 2 should be enough to identify most random memory corruption problems caused by bugs in kernel or driver code when a CPU writes to (or reads from) a random memory location. Note that there exists a class of memory corruptions problems caused by buggy H/W or F/W or by drivers badly programing DMA (basically when memory is written at bus level and the CPU MMU is bypassed) which are not detectable by CONFIG_DEBUG_PAGEALLOC, hence this option will not help tracking down these problems. debug_pagealloc= [KNL] When CONFIG_DEBUG_PAGEALLOC is set, this parameter enables the feature at boot time. By default, it is disabled and the system will work mostly the same as a kernel built without CONFIG_DEBUG_PAGEALLOC. Note: to get most of debug_pagealloc error reports, it's useful to also enable the page_owner functionality. on: enable the feature debugfs= [KNL] This parameter enables what is exposed to userspace and debugfs internal clients. Format: { on, no-mount, off } on: All functions are enabled. no-mount: Filesystem is not registered but kernel clients can access APIs and a crashkernel can be used to read its content. There is nothing to mount. off: Filesystem is not registered and clients get a -EPERM as result when trying to register files or directories within debugfs. This is equivalent of the runtime functionality if debugfs was not enabled in the kernel at all. Default value is set in build-time with a kernel configuration. debugpat [X86] Enable PAT debugging decnet.addr= [HW,NET] Format: <area>[,<node>] See also Documentation/networking/decnet.rst. default_hugepagesz= [HW] The size of the default HugeTLB page. This is the size represented by the legacy /proc/ hugepages APIs. In addition, this is the default hugetlb size used for shmget(), mmap() and mounting hugetlbfs filesystems. If not specified, defaults to the architecture's default huge page size. Huge page sizes are architecture dependent. See also Documentation/admin-guide/mm/hugetlbpage.rst. Format: size[KMG] deferred_probe_timeout= [KNL] Debugging option to set a timeout in seconds for deferred probe to give up waiting on dependencies to probe. Only specific dependencies (subsystems or drivers) that have opted in will be ignored. A timeout of 0 will timeout at the end of initcalls. This option will also dump out devices still on the deferred probe list after retrying. dfltcc= [HW,S390] Format: { on | off | def_only | inf_only | always } on: s390 zlib hardware support for compression on level 1 and decompression (default) off: No s390 zlib hardware support def_only: s390 zlib hardware support for deflate only (compression on level 1) inf_only: s390 zlib hardware support for inflate only (decompression) always: Same as 'on' but ignores the selected compression level always using hardware support (used for debugging) dhash_entries= [KNL] Set number of hash buckets for dentry cache. disable_1tb_segments [PPC] Disables the use of 1TB hash page table segments. This causes the kernel to fall back to 256MB segments which can be useful when debugging issues that require an SLB miss to occur. stress_slb [PPC] Limits the number of kernel SLB entries, and flushes them frequently to increase the rate of SLB faults on kernel addresses. disable= [IPV6] See Documentation/networking/ipv6.rst. hardened_usercopy= [KNL] Under CONFIG_HARDENED_USERCOPY, whether hardening is enabled for this boot. Hardened usercopy checking is used to protect the kernel from reading or writing beyond known memory allocation boundaries as a proactive defense against bounds-checking flaws in the kernel's copy_to_user()/copy_from_user() interface. on Perform hardened usercopy checks (default). off Disable hardened usercopy checks. disable_radix [PPC] Disable RADIX MMU mode on POWER9 radix_hcall_invalidate=on [PPC/PSERIES] Disable RADIX GTSE feature and use hcall for TLB invalidate. disable_tlbie [PPC] Disable TLBIE instruction. Currently does not work with KVM, with HASH MMU, or with coherent accelerators. disable_cpu_apicid= [X86,APIC,SMP] Format: <int> The number of initial APIC ID for the corresponding CPU to be disabled at boot, mostly used for the kdump 2nd kernel to disable BSP to wake up multiple CPUs without causing system reset or hang due to sending INIT from AP to BSP. disable_ddw [PPC/PSERIES] Disable Dynamic DMA Window support. Use this to workaround buggy firmware. disable_ipv6= [IPV6] See Documentation/networking/ipv6.rst. disable_mtrr_cleanup [X86] The kernel tries to adjust MTRR layout from continuous to discrete, to make X server driver able to add WB entry later. This parameter disables that. disable_mtrr_trim [X86, Intel and AMD only] By default the kernel will trim any uncacheable memory out of your available memory pool based on MTRR settings. This parameter disables that behavior, possibly causing your machine to run very slowly. disable_timer_pin_1 [X86] Disable PIN 1 of APIC timer Can be useful to work around chipset bugs. dis_ucode_ldr [X86] Disable the microcode loader. dma_debug=off If the kernel is compiled with DMA_API_DEBUG support, this option disables the debugging code at boot. dma_debug_entries=<number> This option allows to tune the number of preallocated entries for DMA-API debugging code. One entry is required per DMA-API allocation. Use this if the DMA-API debugging code disables itself because the architectural default is too low. dma_debug_driver=<driver_name> With this option the DMA-API debugging driver filter feature can be enabled at boot time. Just pass the driver to filter for as the parameter. The filter can be disabled or changed to another driver later using sysfs. driver_async_probe= [KNL] List of driver names to be probed asynchronously. Format: <driver_name1>,<driver_name2>... drm.edid_firmware=[<connector>:]<file>[,[<connector>:]<file>] Broken monitors, graphic adapters, KVMs and EDIDless panels may send no or incorrect EDID data sets. This parameter allows to specify an EDID data sets in the /lib/firmware directory that are used instead. Generic built-in EDID data sets are used, if one of edid/1024x768.bin, edid/1280x1024.bin, edid/1680x1050.bin, or edid/1920x1080.bin is given and no file with the same name exists. Details and instructions how to build your own EDID data are available in Documentation/admin-guide/edid.rst. An EDID data set will only be used for a particular connector, if its name and a colon are prepended to the EDID name. Each connector may use a unique EDID data set by separating the files with a comma. An EDID data set with no connector name will be used for any connectors not explicitly specified. dscc4.setup= [NET] dt_cpu_ftrs= [PPC] Format: {"off" | "known"} Control how the dt_cpu_ftrs device-tree binding is used for CPU feature discovery and setup (if it exists). off: Do not use it, fall back to legacy cpu table. known: Do not pass through unknown features to guests or userspace, only those that the kernel is aware of. dump_apple_properties [X86] Dump name and content of EFI device properties on x86 Macs. Useful for driver authors to determine what data is available or for reverse-engineering. dyndbg[="val"] [KNL,DYNAMIC_DEBUG] <module>.dyndbg[="val"] Enable debug messages at boot time. See Documentation/admin-guide/dynamic-debug-howto.rst for details. nopku [X86] Disable Memory Protection Keys CPU feature found in some Intel CPUs. <module>.async_probe [KNL] Enable asynchronous probe on this module. early_ioremap_debug [KNL] Enable debug messages in early_ioremap support. This is useful for tracking down temporary early mappings which are not unmapped. earlycon= [KNL] Output early console device and options. When used with no options, the early console is determined by stdout-path property in device tree's chosen node or the ACPI SPCR table if supported by the platform. cdns,<addr>[,options] Start an early, polled-mode console on a Cadence (xuartps) serial port at the specified address. Only supported option is baud rate. If baud rate is not specified, the serial port must already be setup and configured. uart[8250],io,<addr>[,options] uart[8250],mmio,<addr>[,options] uart[8250],mmio32,<addr>[,options] uart[8250],mmio32be,<addr>[,options] uart[8250],0x<addr>[,options] Start an early, polled-mode console on the 8250/16550 UART at the specified I/O port or MMIO address. MMIO inter-register address stride is either 8-bit (mmio) or 32-bit (mmio32 or mmio32be). If none of [io|mmio|mmio32|mmio32be], <addr> is assumed to be equivalent to 'mmio'. 'options' are specified in the same format described for "console=ttyS<n>"; if unspecified, the h/w is not initialized. pl011,<addr> pl011,mmio32,<addr> Start an early, polled-mode console on a pl011 serial port at the specified address. The pl011 serial port must already be setup and configured. Options are not yet supported. If 'mmio32' is specified, then only the driver will use only 32-bit accessors to read/write the device registers. meson,<addr> Start an early, polled-mode console on a meson serial port at the specified address. The serial port must already be setup and configured. Options are not yet supported. msm_serial,<addr> Start an early, polled-mode console on an msm serial port at the specified address. The serial port must already be setup and configured. Options are not yet supported. msm_serial_dm,<addr> Start an early, polled-mode console on an msm serial dm port at the specified address. The serial port must already be setup and configured. Options are not yet supported. owl,<addr> Start an early, polled-mode console on a serial port of an Actions Semi SoC, such as S500 or S900, at the specified address. The serial port must already be setup and configured. Options are not yet supported. rda,<addr> Start an early, polled-mode console on a serial port of an RDA Micro SoC, such as RDA8810PL, at the specified address. The serial port must already be setup and configured. Options are not yet supported. sbi Use RISC-V SBI (Supervisor Binary Interface) for early console. smh Use ARM semihosting calls for early console. s3c2410,<addr> s3c2412,<addr> s3c2440,<addr> s3c6400,<addr> s5pv210,<addr> exynos4210,<addr> Use early console provided by serial driver available on Samsung SoCs, requires selecting proper type and a correct base address of the selected UART port. The serial port must already be setup and configured. Options are not yet supported. lantiq,<addr> Start an early, polled-mode console on a lantiq serial (lqasc) port at the specified address. The serial port must already be setup and configured. Options are not yet supported. lpuart,<addr> lpuart32,<addr> Use early console provided by Freescale LP UART driver found on Freescale Vybrid and QorIQ LS1021A processors. A valid base address must be provided, and the serial port must already be setup and configured. ec_imx21,<addr> ec_imx6q,<addr> Start an early, polled-mode, output-only console on the Freescale i.MX UART at the specified address. The UART must already be setup and configured. ar3700_uart,<addr> Start an early, polled-mode console on the Armada 3700 serial port at the specified address. The serial port must already be setup and configured. Options are not yet supported. qcom_geni,<addr> Start an early, polled-mode console on a Qualcomm Generic Interface (GENI) based serial port at the specified address. The serial port must already be setup and configured. Options are not yet supported. efifb,[options] Start an early, unaccelerated console on the EFI memory mapped framebuffer (if available). On cache coherent non-x86 systems that use system memory for the framebuffer, pass the 'ram' option so that it is mapped with the correct attributes. linflex,<addr> Use early console provided by Freescale LINFlexD UART serial driver for NXP S32V234 SoCs. A valid base address must be provided, and the serial port must already be setup and configured. earlyprintk= [X86,SH,ARM,M68k,S390] earlyprintk=vga earlyprintk=sclp earlyprintk=xen earlyprintk=serial[,ttySn[,baudrate]] earlyprintk=serial[,0x...[,baudrate]] earlyprintk=ttySn[,baudrate] earlyprintk=dbgp[debugController#] earlyprintk=pciserial[,force],bus:device.function[,baudrate] earlyprintk=xdbc[xhciController#] earlyprintk is useful when the kernel crashes before the normal console is initialized. It is not enabled by default because it has some cosmetic problems. Append ",keep" to not disable it when the real console takes over. Only one of vga, efi, serial, or usb debug port can be used at a time. Currently only ttyS0 and ttyS1 may be specified by name. Other I/O ports may be explicitly specified on some architectures (x86 and arm at least) by replacing ttySn with an I/O port address, like this: earlyprintk=serial,0x1008,115200 You can find the port for a given device in /proc/tty/driver/serial: 2: uart:ST16650V2 port:00001008 irq:18 ... Interaction with the standard serial driver is not very good. The VGA and EFI output is eventually overwritten by the real console. The xen output can only be used by Xen PV guests. The sclp output can only be used on s390. The optional "force" to "pciserial" enables use of a PCI device even when its classcode is not of the UART class. edac_report= [HW,EDAC] Control how to report EDAC event Format: {"on" | "off" | "force"} on: enable EDAC to report H/W event. May be overridden by other higher priority error reporting module. off: disable H/W event reporting through EDAC. force: enforce the use of EDAC to report H/W event. default: on. ekgdboc= [X86,KGDB] Allow early kernel console debugging ekgdboc=kbd This is designed to be used in conjunction with the boot argument: earlyprintk=vga This parameter works in place of the kgdboc parameter but can only be used if the backing tty is available very early in the boot process. For early debugging via a serial port see kgdboc_earlycon instead. edd= [EDD] Format: {"off" | "on" | "skip[mbr]"} efi= [EFI] Format: { "debug", "disable_early_pci_dma", "nochunk", "noruntime", "nosoftreserve", "novamap", "no_disable_early_pci_dma" } debug: enable misc debug output. disable_early_pci_dma: disable the busmaster bit on all PCI bridges while in the EFI boot stub. nochunk: disable reading files in "chunks" in the EFI boot stub, as chunking can cause problems with some firmware implementations. noruntime : disable EFI runtime services support nosoftreserve: The EFI_MEMORY_SP (Specific Purpose) attribute may cause the kernel to reserve the memory range for a memory mapping driver to claim. Specify efi=nosoftreserve to disable this reservation and treat the memory by its base type (i.e. EFI_CONVENTIONAL_MEMORY / "System RAM"). novamap: do not call SetVirtualAddressMap(). no_disable_early_pci_dma: Leave the busmaster bit set on all PCI bridges while in the EFI boot stub efi_no_storage_paranoia [EFI; X86] Using this parameter you can use more than 50% of your efi variable storage. Use this parameter only if you are really sure that your UEFI does sane gc and fulfills the spec otherwise your board may brick. efi_fake_mem= nn[KMG]@ss[KMG]:aa[,nn[KMG]@ss[KMG]:aa,..] [EFI; X86] Add arbitrary attribute to specific memory range by updating original EFI memory map. Region of memory which aa attribute is added to is from ss to ss+nn. If efi_fake_mem=2G@4G:0x10000,2G@0x10a0000000:0x10000 is specified, EFI_MEMORY_MORE_RELIABLE(0x10000) attribute is added to range 0x100000000-0x180000000 and 0x10a0000000-0x1120000000. If efi_fake_mem=8G@9G:0x40000 is specified, the EFI_MEMORY_SP(0x40000) attribute is added to range 0x240000000-0x43fffffff. Using this parameter you can do debugging of EFI memmap related features. For example, you can do debugging of Address Range Mirroring feature even if your box doesn't support it, or mark specific memory as "soft reserved". efivar_ssdt= [EFI; X86] Name of an EFI variable that contains an SSDT that is to be dynamically loaded by Linux. If there are multiple variables with the same name but with different vendor GUIDs, all of them will be loaded. See Documentation/admin-guide/acpi/ssdt-overlays.rst for details. eisa_irq_edge= [PARISC,HW] See header of drivers/parisc/eisa.c. elanfreq= [X86-32] See comment before function elanfreq_setup() in arch/x86/kernel/cpu/cpufreq/elanfreq.c. elfcorehdr=[size[KMG]@]offset[KMG] [IA64,PPC,SH,X86,S390] Specifies physical address of start of kernel core image elf header and optionally the size. Generally kexec loader will pass this option to capture kernel. See Documentation/admin-guide/kdump/kdump.rst for details. enable_mtrr_cleanup [X86] The kernel tries to adjust MTRR layout from continuous to discrete, to make X server driver able to add WB entry later. This parameter enables that. enable_timer_pin_1 [X86] Enable PIN 1 of APIC timer Can be useful to work around chipset bugs (in particular on some ATI chipsets). The kernel tries to set a reasonable default. enforcing [SELINUX] Set initial enforcing status. Format: {"0" | "1"} See security/selinux/Kconfig help text. 0 -- permissive (log only, no denials). 1 -- enforcing (deny and log). Default value is 0. Value can be changed at runtime via /sys/fs/selinux/enforce. erst_disable [ACPI] Disable Error Record Serialization Table (ERST) support. ether= [HW,NET] Ethernet cards parameters This option is obsoleted by the "netdev=" option, which has equivalent usage. See its documentation for details. evm= [EVM] Format: { "fix" } Permit 'security.evm' to be updated regardless of current integrity status. failslab= fail_usercopy= fail_page_alloc= fail_make_request=[KNL] General fault injection mechanism. Format: <interval>,<probability>,<space>,<times> See also Documentation/fault-injection/. fb_tunnels= [NET] Format: { initns | none } See Documentation/admin-guide/sysctl/net.rst for fb_tunnels_only_for_init_ns floppy= [HW] See Documentation/admin-guide/blockdev/floppy.rst. force_pal_cache_flush [IA-64] Avoid check_sal_cache_flush which may hang on buggy SAL_CACHE_FLUSH implementations. Using this parameter will force ia64_sal_cache_flush to call ia64_pal_cache_flush instead of SAL_CACHE_FLUSH. forcepae [X86-32] Forcefully enable Physical Address Extension (PAE). Many Pentium M systems disable PAE but may have a functionally usable PAE implementation. Warning: use of this parameter will taint the kernel and may cause unknown problems. ftrace=[tracer] [FTRACE] will set and start the specified tracer as early as possible in order to facilitate early boot debugging. ftrace_dump_on_oops[=orig_cpu] [FTRACE] will dump the trace buffers on oops. If no parameter is passed, ftrace will dump buffers of all CPUs, but if you pass orig_cpu, it will dump only the buffer of the CPU that triggered the oops. ftrace_filter=[function-list] [FTRACE] Limit the functions traced by the function tracer at boot up. function-list is a comma-separated list of functions. This list can be changed at run time by the set_ftrace_filter file in the debugfs tracing directory. ftrace_notrace=[function-list] [FTRACE] Do not trace the functions specified in function-list. This list can be changed at run time by the set_ftrace_notrace file in the debugfs tracing directory. ftrace_graph_filter=[function-list] [FTRACE] Limit the top level callers functions traced by the function graph tracer at boot up. function-list is a comma-separated list of functions that can be changed at run time by the set_graph_function file in the debugfs tracing directory. ftrace_graph_notrace=[function-list] [FTRACE] Do not trace from the functions specified in function-list. This list is a comma-separated list of functions that can be changed at run time by the set_graph_notrace file in the debugfs tracing directory. ftrace_graph_max_depth=<uint> [FTRACE] Used with the function graph tracer. This is the max depth it will trace into a function. This value can be changed at run time by the max_graph_depth file in the tracefs tracing directory. default: 0 (no limit) fw_devlink= [KNL] Create device links between consumer and supplier devices by scanning the firmware to infer the consumer/supplier relationships. This feature is especially useful when drivers are loaded as modules as it ensures proper ordering of tasks like device probing (suppliers first, then consumers), supplier boot state clean up (only after all consumers have probed), suspend/resume & runtime PM (consumers first, then suppliers). Format: { off | permissive | on | rpm } off -- Don't create device links from firmware info. permissive -- Create device links from firmware info but use it only for ordering boot state clean up (sync_state() calls). on -- Create device links from firmware info and use it to enforce probe and suspend/resume ordering. rpm -- Like "on", but also use to order runtime PM. fw_devlink.strict=<bool> [KNL] Treat all inferred dependencies as mandatory dependencies. This only applies for fw_devlink=on|rpm. Format: <bool> gamecon.map[2|3]= [HW,JOY] Multisystem joystick and NES/SNES/PSX pad support via parallel port (up to 5 devices per port) Format: <port#>,<pad1>,<pad2>,<pad3>,<pad4>,<pad5> See also Documentation/input/devices/joystick-parport.rst gamma= [HW,DRM] gart_fix_e820= [X86-64] disable the fix e820 for K8 GART Format: off | on default: on gcov_persist= [GCOV] When non-zero (default), profiling data for kernel modules is saved and remains accessible via debugfs, even when the module is unloaded/reloaded. When zero, profiling data is discarded and associated debugfs files are removed at module unload time. goldfish [X86] Enable the goldfish android emulator platform. Don't use this when you are not running on the android emulator gpt [EFI] Forces disk with valid GPT signature but invalid Protective MBR to be treated as GPT. If the primary GPT is corrupted, it enables the backup/alternate GPT to be used instead. grcan.enable0= [HW] Configuration of physical interface 0. Determines the "Enable 0" bit of the configuration register. Format: 0 | 1 Default: 0 grcan.enable1= [HW] Configuration of physical interface 1. Determines the "Enable 0" bit of the configuration register. Format: 0 | 1 Default: 0 grcan.select= [HW] Select which physical interface to use. Format: 0 | 1 Default: 0 grcan.txsize= [HW] Sets the size of the tx buffer. Format: <unsigned int> such that (txsize & ~0x1fffc0) == 0. Default: 1024 grcan.rxsize= [HW] Sets the size of the rx buffer. Format: <unsigned int> such that (rxsize & ~0x1fffc0) == 0. Default: 1024 gpio-mockup.gpio_mockup_ranges [HW] Sets the ranges of gpiochip of for this device. Format: <start1>,<end1>,<start2>,<end2>... hardlockup_all_cpu_backtrace= [KNL] Should the hard-lockup detector generate backtraces on all cpus. Format: 0 | 1 hashdist= [KNL,NUMA] Large hashes allocated during boot are distributed across NUMA nodes. Defaults on for 64-bit NUMA, off otherwise. Format: 0 | 1 (for off | on) hcl= [IA-64] SGI's Hardware Graph compatibility layer hd= [EIDE] (E)IDE hard drive subsystem geometry Format: <cyl>,<head>,<sect> hest_disable [ACPI] Disable Hardware Error Source Table (HEST) support; corresponding firmware-first mode error processing logic will be disabled. highmem=nn[KMG] [KNL,BOOT] forces the highmem zone to have an exact size of <nn>. This works even on boxes that have no highmem otherwise. This also works to reduce highmem size on bigger boxes. highres= [KNL] Enable/disable high resolution timer mode. Valid parameters: "on", "off" Default: "on" hlt [BUGS=ARM,SH] hpet= [X86-32,HPET] option to control HPET usage Format: { enable (default) | disable | force | verbose } disable: disable HPET and use PIT instead force: allow force enabled of undocumented chips (ICH4, VIA, nVidia) verbose: show contents of HPET registers during setup hpet_mmap= [X86, HPET_MMAP] Allow userspace to mmap HPET registers. Default set by CONFIG_HPET_MMAP_DEFAULT. hugetlb_cma= [HW,CMA] The size of a CMA area used for allocation of gigantic hugepages. Format: nn[KMGTPE] Reserve a CMA area of given size and allocate gigantic hugepages using the CMA allocator. If enabled, the boot-time allocation of gigantic hugepages is skipped. hugepages= [HW] Number of HugeTLB pages to allocate at boot. If this follows hugepagesz (below), it specifies the number of pages of hugepagesz to be allocated. If this is the first HugeTLB parameter on the command line, it specifies the number of pages to allocate for the default huge page size. See also Documentation/admin-guide/mm/hugetlbpage.rst. Format: <integer> hugepagesz= [HW] The size of the HugeTLB pages. This is used in conjunction with hugepages (above) to allocate huge pages of a specific size at boot. The pair hugepagesz=X hugepages=Y can be specified once for each supported huge page size. Huge page sizes are architecture dependent. See also Documentation/admin-guide/mm/hugetlbpage.rst. Format: size[KMG] hung_task_panic= [KNL] Should the hung task detector generate panics. Format: 0 | 1 A value of 1 instructs the kernel to panic when a hung task is detected. The default value is controlled by the CONFIG_BOOTPARAM_HUNG_TASK_PANIC build-time option. The value selected by this boot parameter can be changed later by the kernel.hung_task_panic sysctl. hvc_iucv= [S390] Number of z/VM IUCV hypervisor console (HVC) terminal devices. Valid values: 0..8 hvc_iucv_allow= [S390] Comma-separated list of z/VM user IDs. If specified, z/VM IUCV HVC accepts connections from listed z/VM user IDs only. hv_nopvspin [X86,HYPER_V] Disables the paravirt spinlock optimizations which allow the hypervisor to 'idle' the guest on lock contention. keep_bootcon [KNL] Do not unregister boot console at start. This is only useful for debugging when something happens in the window between unregistering the boot console and initializing the real console. i2c_bus= [HW] Override the default board specific I2C bus speed or register an additional I2C bus that is not registered from board initialization code. Format: <bus_id>,<clkrate> i8042.debug [HW] Toggle i8042 debug mode i8042.unmask_kbd_data [HW] Enable printing of interrupt data from the KBD port (disabled by default, and as a pre-condition requires that i8042.debug=1 be enabled) i8042.direct [HW] Put keyboard port into non-translated mode i8042.dumbkbd [HW] Pretend that controller can only read data from keyboard and cannot control its state (Don't attempt to blink the leds) i8042.noaux [HW] Don't check for auxiliary (== mouse) port i8042.nokbd [HW] Don't check/create keyboard port i8042.noloop [HW] Disable the AUX Loopback command while probing for the AUX port i8042.nomux [HW] Don't check presence of an active multiplexing controller i8042.nopnp [HW] Don't use ACPIPnP / PnPBIOS to discover KBD/AUX controllers i8042.notimeout [HW] Ignore timeout condition signalled by controller i8042.reset [HW] Reset the controller during init, cleanup and suspend-to-ram transitions, only during s2r transitions, or never reset Format: { 1 | Y | y | 0 | N | n } 1, Y, y: always reset controller 0, N, n: don't ever reset controller Default: only on s2r transitions on x86; most other architectures force reset to be always executed i8042.unlock [HW] Unlock (ignore) the keylock i8042.kbdreset [HW] Reset device connected to KBD port i810= [HW,DRM] i8k.ignore_dmi [HW] Continue probing hardware even if DMI data indicates that the driver is running on unsupported hardware. i8k.force [HW] Activate i8k driver even if SMM BIOS signature does not match list of supported models. i8k.power_status [HW] Report power status in /proc/i8k (disabled by default) i8k.restricted [HW] Allow controlling fans only if SYS_ADMIN capability is set. i915.invert_brightness= [DRM] Invert the sense of the variable that is used to set the brightness of the panel backlight. Normally a brightness value of 0 indicates backlight switched off, and the maximum of the brightness value sets the backlight to maximum brightness. If this parameter is set to 0 (default) and the machine requires it, or this parameter is set to 1, a brightness value of 0 sets the backlight to maximum brightness, and the maximum of the brightness value switches the backlight off. -1 -- never invert brightness 0 -- machine default 1 -- force brightness inversion icn= [HW,ISDN] Format: <io>[,<membase>[,<icn_id>[,<icn_id2>]]] ide-core.nodma= [HW] (E)IDE subsystem Format: =0.0 to prevent dma on hda, =0.1 hdb =1.0 hdc .vlb_clock .pci_clock .noflush .nohpa .noprobe .nowerr .cdrom .chs .ignore_cable are additional options See Documentation/ide/ide.rst. ide-generic.probe-mask= [HW] (E)IDE subsystem Format: <int> Probe mask for legacy ISA IDE ports. Depending on platform up to 6 ports are supported, enabled by setting corresponding bits in the mask to 1. The default value is 0x0, which has a special meaning. On systems that have PCI, it triggers scanning the PCI bus for the first and the second port, which are then probed. On systems without PCI the value of 0x0 enables probing the two first ports as if it was 0x3. ide-pci-generic.all-generic-ide [HW] (E)IDE subsystem Claim all unknown PCI IDE storage controllers. idle= [X86] Format: idle=poll, idle=halt, idle=nomwait Poll forces a polling idle loop that can slightly improve the performance of waking up a idle CPU, but will use a lot of power and make the system run hot. Not recommended. idle=halt: Halt is forced to be used for CPU idle. In such case C2/C3 won't be used again. idle=nomwait: Disable mwait for CPU C-states idxd.sva= [HW] Format: <bool> Allow force disabling of Shared Virtual Memory (SVA) support for the idxd driver. By default it is set to true (1). ieee754= [MIPS] Select IEEE Std 754 conformance mode Format: { strict | legacy | 2008 | relaxed } Default: strict Choose which programs will be accepted for execution based on the IEEE 754 NaN encoding(s) supported by the FPU and the NaN encoding requested with the value of an ELF file header flag individually set by each binary. Hardware implementations are permitted to support either or both of the legacy and the 2008 NaN encoding mode. Available settings are as follows: strict accept binaries that request a NaN encoding supported by the FPU legacy only accept legacy-NaN binaries, if supported by the FPU 2008 only accept 2008-NaN binaries, if supported by the FPU relaxed accept any binaries regardless of whether supported by the FPU The FPU emulator is always able to support both NaN encodings, so if no FPU hardware is present or it has been disabled with 'nofpu', then the settings of 'legacy' and '2008' strap the emulator accordingly, 'relaxed' straps the emulator for both legacy-NaN and 2008-NaN, whereas 'strict' enables legacy-NaN only on legacy processors and both NaN encodings on MIPS32 or MIPS64 CPUs. The setting for ABS.fmt/NEG.fmt instruction execution mode generally follows that for the NaN encoding, except where unsupported by hardware. ignore_loglevel [KNL] Ignore loglevel setting - this will print /all/ kernel messages to the console. Useful for debugging. We also add it as printk module parameter, so users could change it dynamically, usually by /sys/module/printk/parameters/ignore_loglevel. ignore_rlimit_data Ignore RLIMIT_DATA setting for data mappings, print warning at first misuse. Can be changed via /sys/module/kernel/parameters/ignore_rlimit_data. ihash_entries= [KNL] Set number of hash buckets for inode cache. ima_appraise= [IMA] appraise integrity measurements Format: { "off" | "enforce" | "fix" | "log" } default: "enforce" ima_appraise_tcb [IMA] Deprecated. Use ima_policy= instead. The builtin appraise policy appraises all files owned by uid=0. ima_canonical_fmt [IMA] Use the canonical format for the binary runtime measurements, instead of host native format. ima_hash= [IMA] Format: { md5 | sha1 | rmd160 | sha256 | sha384 | sha512 | ... } default: "sha1" The list of supported hash algorithms is defined in crypto/hash_info.h. ima_policy= [IMA] The builtin policies to load during IMA setup. Format: "tcb | appraise_tcb | secure_boot | fail_securely | critical_data" The "tcb" policy measures all programs exec'd, files mmap'd for exec, and all files opened with the read mode bit set by either the effective uid (euid=0) or uid=0. The "appraise_tcb" policy appraises the integrity of all files owned by root. The "secure_boot" policy appraises the integrity of files (eg. kexec kernel image, kernel modules, firmware, policy, etc) based on file signatures. The "fail_securely" policy forces file signature verification failure also on privileged mounted filesystems with the SB_I_UNVERIFIABLE_SIGNATURE flag. The "critical_data" policy measures kernel integrity critical data. ima_tcb [IMA] Deprecated. Use ima_policy= instead. Load a policy which meets the needs of the Trusted Computing Base. This means IMA will measure all programs exec'd, files mmap'd for exec, and all files opened for read by uid=0. ima_template= [IMA] Select one of defined IMA measurements template formats. Formats: { "ima" | "ima-ng" | "ima-sig" } Default: "ima-ng" ima_template_fmt= [IMA] Define a custom template format. Format: { "field1|...|fieldN" } ima.ahash_minsize= [IMA] Minimum file size for asynchronous hash usage Format: <min_file_size> Set the minimal file size for using asynchronous hash. If left unspecified, ahash usage is disabled. ahash performance varies for different data sizes on different crypto accelerators. This option can be used to achieve the best performance for a particular HW. ima.ahash_bufsize= [IMA] Asynchronous hash buffer size Format: <bufsize> Set hashing buffer size. Default: 4k. ahash performance varies for different chunk sizes on different crypto accelerators. This option can be used to achieve best performance for particular HW. init= [KNL] Format: <full_path> Run specified binary instead of /sbin/init as init process. initcall_debug [KNL] Trace initcalls as they are executed. Useful for working out where the kernel is dying during startup. initcall_blacklist= [KNL] Do not execute a comma-separated list of initcall functions. Useful for debugging built-in modules and initcalls. initrd= [BOOT] Specify the location of the initial ramdisk initrdmem= [KNL] Specify a physical address and size from which to load the initrd. If an initrd is compiled in or specified in the bootparams, it takes priority over this setting. Format: ss[KMG],nn[KMG] Default is 0, 0 init_on_alloc= [MM] Fill newly allocated pages and heap objects with zeroes. Format: 0 | 1 Default set by CONFIG_INIT_ON_ALLOC_DEFAULT_ON. init_on_free= [MM] Fill freed pages and heap objects with zeroes. Format: 0 | 1 Default set by CONFIG_INIT_ON_FREE_DEFAULT_ON. init_pkru= [X86] Specify the default memory protection keys rights register contents for all processes. 0x55555554 by default (disallow access to all but pkey 0). Can override in debugfs after boot. inport.irq= [HW] Inport (ATI XL and Microsoft) busmouse driver Format: <irq> int_pln_enable [X86] Enable power limit notification interrupt integrity_audit=[IMA] Format: { "0" | "1" } 0 -- basic integrity auditing messages. (Default) 1 -- additional integrity auditing messages. intel_iommu= [DMAR] Intel IOMMU driver (DMAR) option on Enable intel iommu driver. off Disable intel iommu driver. igfx_off [Default Off] By default, gfx is mapped as normal device. If a gfx device has a dedicated DMAR unit, the DMAR unit is bypassed by not enabling DMAR with this option. In this case, gfx device will use physical address for DMA. forcedac [X86-64] With this option iommu will not optimize to look for io virtual address below 32-bit forcing dual address cycle on pci bus for cards supporting greater than 32-bit addressing. The default is to look for translation below 32-bit and if not available then look in the higher range. strict [Default Off] With this option on every unmap_single operation will result in a hardware IOTLB flush operation as opposed to batching them for performance. sp_off [Default Off] By default, super page will be supported if Intel IOMMU has the capability. With this option, super page will not be supported. sm_on [Default Off] By default, scalable mode will be disabled even if the hardware advertises that it has support for the scalable mode translation. With this option set, scalable mode will be used on hardware which claims to support it. tboot_noforce [Default Off] Do not force the Intel IOMMU enabled under tboot. By default, tboot will force Intel IOMMU on, which could harm performance of some high-throughput devices like 40GBit network cards, even if identity mapping is enabled. Note that using this option lowers the security provided by tboot because it makes the system vulnerable to DMA attacks. intel_idle.max_cstate= [KNL,HW,ACPI,X86] 0 disables intel_idle and fall back on acpi_idle. 1 to 9 specify maximum depth of C-state. intel_pstate= [X86] disable Do not enable intel_pstate as the default scaling driver for the supported processors passive Use intel_pstate as a scaling driver, but configure it to work with generic cpufreq governors (instead of enabling its internal governor). This mode cannot be used along with the hardware-managed P-states (HWP) feature. force Enable intel_pstate on systems that prohibit it by default in favor of acpi-cpufreq. Forcing the intel_pstate driver instead of acpi-cpufreq may disable platform features, such as thermal controls and power capping, that rely on ACPI P-States information being indicated to OSPM and therefore should be used with caution. This option does not work with processors that aren't supported by the intel_pstate driver or on platforms that use pcc-cpufreq instead of acpi-cpufreq. no_hwp Do not enable hardware P state control (HWP) if available. hwp_only Only load intel_pstate on systems which support hardware P state control (HWP) if available. support_acpi_ppc Enforce ACPI _PPC performance limits. If the Fixed ACPI Description Table, specifies preferred power management profile as "Enterprise Server" or "Performance Server", then this feature is turned on by default. per_cpu_perf_limits Allow per-logical-CPU P-State performance control limits using cpufreq sysfs interface intremap= [X86-64, Intel-IOMMU] on enable Interrupt Remapping (default) off disable Interrupt Remapping nosid disable Source ID checking no_x2apic_optout BIOS x2APIC opt-out request will be ignored nopost disable Interrupt Posting iomem= Disable strict checking of access to MMIO memory strict regions from userspace. relaxed iommu= [X86] off force noforce biomerge panic nopanic merge nomerge soft pt [X86] nopt [X86] nobypass [PPC/POWERNV] Disable IOMMU bypass, using IOMMU for PCI devices. iommu.strict= [ARM64] Configure TLB invalidation behaviour Format: { "0" | "1" } 0 - Lazy mode. Request that DMA unmap operations use deferred invalidation of hardware TLBs, for increased throughput at the cost of reduced device isolation. Will fall back to strict mode if not supported by the relevant IOMMU driver. 1 - Strict mode (default). DMA unmap operations invalidate IOMMU hardware TLBs synchronously. iommu.passthrough= [ARM64, X86] Configure DMA to bypass the IOMMU by default. Format: { "0" | "1" } 0 - Use IOMMU translation for DMA. 1 - Bypass the IOMMU for DMA. unset - Use value of CONFIG_IOMMU_DEFAULT_PASSTHROUGH. io7= [HW] IO7 for Marvel-based Alpha systems See comment before marvel_specify_io7 in arch/alpha/kernel/core_marvel.c. io_delay= [X86] I/O delay method 0x80 Standard port 0x80 based delay 0xed Alternate port 0xed based delay (needed on some systems) udelay Simple two microseconds delay none No delay ip= [IP_PNP] See Documentation/admin-guide/nfs/nfsroot.rst. ipcmni_extend [KNL] Extend the maximum number of unique System V IPC identifiers from 32,768 to 16,777,216. irqaffinity= [SMP] Set the default irq affinity mask The argument is a cpu list, as described above. irqchip.gicv2_force_probe= [ARM, ARM64] Format: <bool> Force the kernel to look for the second 4kB page of a GICv2 controller even if the memory range exposed by the device tree is too small. irqchip.gicv3_nolpi= [ARM, ARM64] Force the kernel to ignore the availability of LPIs (and by consequence ITSs). Intended for system that use the kernel as a bootloader, and thus want to let secondary kernels in charge of setting up LPIs. irqchip.gicv3_pseudo_nmi= [ARM64] Enables support for pseudo-NMIs in the kernel. This requires the kernel to be built with CONFIG_ARM64_PSEUDO_NMI. irqfixup [HW] When an interrupt is not handled search all handlers for it. Intended to get systems with badly broken firmware running. irqpoll [HW] When an interrupt is not handled search all handlers for it. Also check all handlers each timer interrupt. Intended to get systems with badly broken firmware running. isapnp= [ISAPNP] Format: <RDP>,<reset>,<pci_scan>,<verbosity> isolcpus= [KNL,SMP,ISOL] Isolate a given set of CPUs from disturbance. [Deprecated - use cpusets instead] Format: [flag-list,]<cpu-list> Specify one or more CPUs to isolate from disturbances specified in the flag list (default: domain): nohz Disable the tick when a single task runs. A residual 1Hz tick is offloaded to workqueues, which you need to affine to housekeeping through the global workqueue's affinity configured via the /sys/devices/virtual/workqueue/cpumask sysfs file, or by using the 'domain' flag described below. NOTE: by default the global workqueue runs on all CPUs, so to protect individual CPUs the 'cpumask' file has to be configured manually after bootup. domain Isolate from the general SMP balancing and scheduling algorithms. Note that performing domain isolation this way is irreversible: it's not possible to bring back a CPU to the domains once isolated through isolcpus. It's strongly advised to use cpusets instead to disable scheduler load balancing through the "cpuset.sched_load_balance" file. It offers a much more flexible interface where CPUs can move in and out of an isolated set anytime. You can move a process onto or off an "isolated" CPU via the CPU affinity syscalls or cpuset. <cpu number> begins at 0 and the maximum value is "number of CPUs in system - 1". managed_irq Isolate from being targeted by managed interrupts which have an interrupt mask containing isolated CPUs. The affinity of managed interrupts is handled by the kernel and cannot be changed via the /proc/irq/* interfaces. This isolation is best effort and only effective if the automatically assigned interrupt mask of a device queue contains isolated and housekeeping CPUs. If housekeeping CPUs are online then such interrupts are directed to the housekeeping CPU so that IO submitted on the housekeeping CPU cannot disturb the isolated CPU. If a queue's affinity mask contains only isolated CPUs then this parameter has no effect on the interrupt routing decision, though interrupts are only delivered when tasks running on those isolated CPUs submit IO. IO submitted on housekeeping CPUs has no influence on those queues. The format of <cpu-list> is described above. iucv= [HW,NET] ivrs_ioapic [HW,X86-64] Provide an override to the IOAPIC-ID<->DEVICE-ID mapping provided in the IVRS ACPI table. For example, to map IOAPIC-ID decimal 10 to PCI device 00:14.0 write the parameter as: ivrs_ioapic[10]=00:14.0 ivrs_hpet [HW,X86-64] Provide an override to the HPET-ID<->DEVICE-ID mapping provided in the IVRS ACPI table. For example, to map HPET-ID decimal 0 to PCI device 00:14.0 write the parameter as: ivrs_hpet[0]=00:14.0 ivrs_acpihid [HW,X86-64] Provide an override to the ACPI-HID:UID<->DEVICE-ID mapping provided in the IVRS ACPI table. For example, to map UART-HID:UID AMD0020:0 to PCI device 00:14.5 write the parameter as: ivrs_acpihid[00:14.5]=AMD0020:0 js= [HW,JOY] Analog joystick See Documentation/input/joydev/joystick.rst. nokaslr [KNL] When CONFIG_RANDOMIZE_BASE is set, this disables kernel and module base offset ASLR (Address Space Layout Randomization). kasan_multi_shot [KNL] Enforce KASAN (Kernel Address Sanitizer) to print report on every invalid memory access. Without this parameter KASAN will print report only for the first invalid access. keepinitrd [HW,ARM] kernelcore= [KNL,X86,IA-64,PPC] Format: nn[KMGTPE] | nn% | "mirror" This parameter specifies the amount of memory usable by the kernel for non-movable allocations. The requested amount is spread evenly throughout all nodes in the system as ZONE_NORMAL. The remaining memory is used for movable memory in its own zone, ZONE_MOVABLE. In the event, a node is too small to have both ZONE_NORMAL and ZONE_MOVABLE, kernelcore memory will take priority and other nodes will have a larger ZONE_MOVABLE. ZONE_MOVABLE is used for the allocation of pages that may be reclaimed or moved by the page migration subsystem. Note that allocations like PTEs-from-HighMem still use the HighMem zone if it exists, and the Normal zone if it does not. It is possible to specify the exact amount of memory in the form of "nn[KMGTPE]", a percentage of total system memory in the form of "nn%", or "mirror". If "mirror" option is specified, mirrored (reliable) memory is used for non-movable allocations and remaining memory is used for Movable pages. "nn[KMGTPE]", "nn%", and "mirror" are exclusive, so you cannot specify multiple forms. kgdbdbgp= [KGDB,HW] kgdb over EHCI usb debug port. Format: <Controller#>[,poll interval] The controller # is the number of the ehci usb debug port as it is probed via PCI. The poll interval is optional and is the number seconds in between each poll cycle to the debug port in case you need the functionality for interrupting the kernel with gdb or control-c on the dbgp connection. When not using this parameter you use sysrq-g to break into the kernel debugger. kgdboc= [KGDB,HW] kgdb over consoles. Requires a tty driver that supports console polling, or a supported polling keyboard driver (non-usb). Serial only format: <serial_device>[,baud] keyboard only format: kbd keyboard and serial format: kbd,<serial_device>[,baud] Optional Kernel mode setting: kms, kbd format: kms,kbd kms, kbd and serial format: kms,kbd,<ser_dev>[,baud] kgdboc_earlycon= [KGDB,HW] If the boot console provides the ability to read characters and can work in polling mode, you can use this parameter to tell kgdb to use it as a backend until the normal console is registered. Intended to be used together with the kgdboc parameter which specifies the normal console to transition to. The name of the early console should be specified as the value of this parameter. Note that the name of the early console might be different than the tty name passed to kgdboc. It's OK to leave the value blank and the first boot console that implements read() will be picked. kgdbwait [KGDB] Stop kernel execution and enter the kernel debugger at the earliest opportunity. kmac= [MIPS] Korina ethernet MAC address. Configure the RouterBoard 532 series on-chip Ethernet adapter MAC address. kmemleak= [KNL] Boot-time kmemleak enable/disable Valid arguments: on, off Default: on Built with CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF=y, the default is off. kprobe_event=[probe-list] [FTRACE] Add kprobe events and enable at boot time. The probe-list is a semicolon delimited list of probe definitions. Each definition is same as kprobe_events interface, but the parameters are comma delimited. For example, to add a kprobe event on vfs_read with arg1 and arg2, add to the command line; kprobe_event=p,vfs_read,$arg1,$arg2 See also Documentation/trace/kprobetrace.rst "Kernel Boot Parameter" section. kpti= [ARM64] Control page table isolation of user and kernel address spaces. Default: enabled on cores which need mitigation. 0: force disabled 1: force enabled kvm.ignore_msrs=[KVM] Ignore guest accesses to unhandled MSRs. Default is 0 (don't ignore, but inject #GP) kvm.enable_vmware_backdoor=[KVM] Support VMware backdoor PV interface. Default is false (don't support). kvm.mmu_audit= [KVM] This is a R/W parameter which allows audit KVM MMU at runtime. Default is 0 (off) kvm.nx_huge_pages= [KVM] Controls the software workaround for the X86_BUG_ITLB_MULTIHIT bug. force : Always deploy workaround. off : Never deploy workaround. auto : Deploy workaround based on the presence of X86_BUG_ITLB_MULTIHIT. Default is 'auto'. If the software workaround is enabled for the host, guests do need not to enable it for nested guests. kvm.nx_huge_pages_recovery_ratio= [KVM] Controls how many 4KiB pages are periodically zapped back to huge pages. 0 disables the recovery, otherwise if the value is N KVM will zap 1/Nth of the 4KiB pages every minute. The default is 60. kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM. Default is 1 (enabled) kvm-amd.npt= [KVM,AMD] Disable nested paging (virtualized MMU) for all guests. Default is 1 (enabled) if in 64-bit or 32-bit PAE mode. kvm-arm.mode= [KVM,ARM] Select one of KVM/arm64's modes of operation. nvhe: Standard nVHE-based mode, without support for protected guests. protected: nVHE-based mode with support for guests whose state is kept private from the host. Not valid if the kernel is running in EL2. Defaults to VHE/nVHE based on hardware support and the value of CONFIG_ARM64_VHE. kvm-arm.vgic_v3_group0_trap= [KVM,ARM] Trap guest accesses to GICv3 group-0 system registers kvm-arm.vgic_v3_group1_trap= [KVM,ARM] Trap guest accesses to GICv3 group-1 system registers kvm-arm.vgic_v3_common_trap= [KVM,ARM] Trap guest accesses to GICv3 common system registers kvm-arm.vgic_v4_enable= [KVM,ARM] Allow use of GICv4 for direct injection of LPIs. kvm_cma_resv_ratio=n [PPC] Reserves given percentage from system memory area for contiguous memory allocation for KVM hash pagetable allocation. By default it reserves 5% of total system memory. Format: <integer> Default: 5 kvm-intel.ept= [KVM,Intel] Disable extended page tables (virtualized MMU) support on capable Intel chips. Default is 1 (enabled) kvm-intel.emulate_invalid_guest_state= [KVM,Intel] Enable emulation of invalid guest states Default is 0 (disabled) kvm-intel.flexpriority= [KVM,Intel] Disable FlexPriority feature (TPR shadow). Default is 1 (enabled) kvm-intel.nested= [KVM,Intel] Enable VMX nesting (nVMX). Default is 0 (disabled) kvm-intel.unrestricted_guest= [KVM,Intel] Disable unrestricted guest feature (virtualized real and unpaged mode) on capable Intel chips. Default is 1 (enabled) kvm-intel.vmentry_l1d_flush=[KVM,Intel] Mitigation for L1 Terminal Fault CVE-2018-3620. Valid arguments: never, cond, always always: L1D cache flush on every VMENTER. cond: Flush L1D on VMENTER only when the code between VMEXIT and VMENTER can leak host memory. never: Disables the mitigation Default is cond (do L1 cache flush in specific instances) kvm-intel.vpid= [KVM,Intel] Disable Virtual Processor Identification feature (tagged TLBs) on capable Intel chips. Default is 1 (enabled) l1tf= [X86] Control mitigation of the L1TF vulnerability on affected CPUs The kernel PTE inversion protection is unconditionally enabled and cannot be disabled. full Provides all available mitigations for the L1TF vulnerability. Disables SMT and enables all mitigations in the hypervisors, i.e. unconditional L1D flush. SMT control and L1D flush control via the sysfs interface is still possible after boot. Hypervisors will issue a warning when the first VM is started in a potentially insecure configuration, i.e. SMT enabled or L1D flush disabled. full,force Same as 'full', but disables SMT and L1D flush runtime control. Implies the 'nosmt=force' command line option. (i.e. sysfs control of SMT is disabled.) flush Leaves SMT enabled and enables the default hypervisor mitigation, i.e. conditional L1D flush. SMT control and L1D flush control via the sysfs interface is still possible after boot. Hypervisors will issue a warning when the first VM is started in a potentially insecure configuration, i.e. SMT enabled or L1D flush disabled. flush,nosmt Disables SMT and enables the default hypervisor mitigation. SMT control and L1D flush control via the sysfs interface is still possible after boot. Hypervisors will issue a warning when the first VM is started in a potentially insecure configuration, i.e. SMT enabled or L1D flush disabled. flush,nowarn Same as 'flush', but hypervisors will not warn when a VM is started in a potentially insecure configuration. off Disables hypervisor mitigations and doesn't emit any warnings. It also drops the swap size and available RAM limit restriction on both hypervisor and bare metal. Default is 'flush'. For details see: Documentation/admin-guide/hw-vuln/l1tf.rst l2cr= [PPC] l3cr= [PPC] lapic [X86-32,APIC] Enable the local APIC even if BIOS disabled it. lapic= [X86,APIC] Do not use TSC deadline value for LAPIC timer one-shot implementation. Default back to the programmable timer unit in the LAPIC. Format: notscdeadline lapic_timer_c2_ok [X86,APIC] trust the local apic timer in C2 power state. libata.dma= [LIBATA] DMA control libata.dma=0 Disable all PATA and SATA DMA libata.dma=1 PATA and SATA Disk DMA only libata.dma=2 ATAPI (CDROM) DMA only libata.dma=4 Compact Flash DMA only Combinations also work, so libata.dma=3 enables DMA for disks and CDROMs, but not CFs. libata.ignore_hpa= [LIBATA] Ignore HPA limit libata.ignore_hpa=0 keep BIOS limits (default) libata.ignore_hpa=1 ignore limits, using full disk libata.noacpi [LIBATA] Disables use of ACPI in libata suspend/resume when set. Format: <int> libata.force= [LIBATA] Force configurations. The format is comma- separated list of "[ID:]VAL" where ID is PORT[.DEVICE]. PORT and DEVICE are decimal numbers matching port, link or device. Basically, it matches the ATA ID string printed on console by libata. If the whole ID part is omitted, the last PORT and DEVICE values are used. If ID hasn't been specified yet, the configuration applies to all ports, links and devices. If only DEVICE is omitted, the parameter applies to the port and all links and devices behind it. DEVICE number of 0 either selects the first device or the first fan-out link behind PMP device. It does not select the host link. DEVICE number of 15 selects the host link and device attached to it. The VAL specifies the configuration to force. As long as there's no ambiguity shortcut notation is allowed. For example, both 1.5 and 1.5G would work for 1.5Gbps. The following configurations can be forced. * Cable type: 40c, 80c, short40c, unk, ign or sata. Any ID with matching PORT is used. * SATA link speed limit: 1.5Gbps or 3.0Gbps. * Transfer mode: pio[0-7], mwdma[0-4] and udma[0-7]. udma[/][16,25,33,44,66,100,133] notation is also allowed. * [no]ncq: Turn on or off NCQ. * [no]ncqtrim: Turn off queued DSM TRIM. * nohrst, nosrst, norst: suppress hard, soft and both resets. * rstonce: only attempt one reset during hot-unplug link recovery * dump_id: dump IDENTIFY data. * atapi_dmadir: Enable ATAPI DMADIR bridge support * disable: Disable this device. If there are multiple matching configurations changing the same attribute, the last one is used.