combiner相当于是一个本地的reduce,它的存在是为了减少网络的负担,在本地先进行一次计算再叫计算结果提交给reduce进行二次处理。
现在的流程为:
对于combiner我们有这些理解:
Mapper代码展示:
package com.nenu.mprd.test; import java.io.IOException; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit; public class MyMap extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
//获取到单词
String line=value.toString();
String[] words=line.split(" ");
//获取到文件名
FileSplit filesplit = (FileSplit)context.getInputSplit();
String fileName = filesplit.getPath().getName().trim();//.substring(0,5). String outkey=null;
for (String word : words) {
//字母+:+文件名
outkey=word.trim()+":"+fileName;
System.out.println("map:"+outkey); context.write(new Text(outkey), new Text("1"));
}
}
}
Combiner代码展示:
package com.nenu.mprd.test; import java.io.IOException; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class MyCombiner extends Reducer<Text, Text, Text, Text>{
@Override
protected void reduce(Text key, Iterable<Text> values,Context context) throws IOException, InterruptedException {
Text n = null;//输出key
int count=0;
Text m=null;//输出value
for(Text v :values){ //对同一个map输出的k,v对进行按k进行一次汇总。不同map的k,v汇总必须要用reduce方法
String[] words=key.toString().split(":");
n=new Text(words[0].trim());//字母--key
System.out.println("MyCombiner KEY:"+n); count+=Integer.parseInt(v.toString());
m=new Text("("+words[1].trim()+" "+count+")"); }
System.out.println("MyCombiner value:"+m);
context.write(n, m);
} }
Reduce代码展示:
package com.nenu.mprd.test; import java.io.IOException; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class MyReduce extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values,
Reducer<Text, Text, Text, Text>.Context context) throws IOException, InterruptedException {
// TODO Auto-generated method stub
System.out.println("reduce: key"+key);
String out="";
for (Text Text : values) {
//sum+=intWritable.get();
out+=Text.toString()+" ";
}
System.out.println("reduce value:"+out);
context.write(key, new Text(out));
}
}
Job代码展示:
package com.nenu.mprd.test; import java.net.URI; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class MyJob extends Configured implements Tool{ public static void main(String[] args) throws Exception {
MyJob myJob=new MyJob();
ToolRunner.run(myJob, null);
}
@Override
public int run(String[] args) throws Exception {
// TODO Auto-generated method stub
Configuration conf=new Configuration();
conf.set("fs.defaultFS", "hdfs://192.168.64.141:9000"); //添加自动删除hadoop下的文件
//如果导成架包则需要改变一些参数作为手动输入
FileSystem filesystem =FileSystem.get(new URI("hdfs://192.168.64.141:9000"), conf, "root");
Path deletePath=new Path("/hadoop/wordcount/city/out");
if(filesystem.exists(deletePath)){
filesystem.delete(deletePath,true);//str: b:
} Job job=Job.getInstance(conf);
job.setJarByClass(MyJob.class);
job.setMapperClass(MyMap.class); //设置combiner 如果combiner和reduce一样则可以不用设置
job.setCombinerClass(MyCombiner.class); job.setReducerClass(MyReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path("/hadoop/wordcount/city"));
FileOutputFormat.setOutputPath(job, new Path("/hadoop/wordcount/city/out"));
job.waitForCompletion(true);
return 0;
} }