问题1.
给定\(\delta>0\),定义函数\(f: (-\delta,\delta)\backslash \{0\}\rightarrow \mathbb{R}\),它满足
\[\lim_{x\to 0}\Big(f(x)+\frac{1}{|f(x)|}\Big)=0. \]
求证:\(\lim_{x\to 0}f(x)\)存在,且值为\(-1\).
\(\color{black}{证.}\) 定义\(B_r:=(-r,r)\backslash \{0\},\forall r>0\),且\(g(x):=f(x)+\frac{1}{|f(x)|},x\in B_{\delta}\).
假设\(\color{blue}{\forall r>0,\exists a\in B_r,f(a)>0}\),则
\[g(a)=|f(a)|+\frac{1}{|f(a)|}\geqslant 2. \]
这与\(\lim g(x)=0\)矛盾!因此,\(\color{blue}{\exists r>0,\forall x\in B_r,f(x)\leqslant 0.}\)
当\(x\in B_r\)时,根据\(g\)的定义,解得
\[0\geqslant f(x)=\frac{g(x)-\sqrt{g(x)^2+4}}{2}. \]
利用\(\lim g(x)=0\)及\(\frac{x-\sqrt{x^2+4}}{2}\)的连续性,得到\(\lim f(x)=-1\).\(\qquad\vartriangleleft\)