【BP预测】基于花授粉算法改进BP神经网络实现数据预测

一、 BP神经网络预测算法简介

说明:1.1节主要是概括和帮助理解考虑影响因素的BP神经网络算法原理,即常规的BP模型训练原理讲解(可根据自身掌握的知识是否跳过)。1.2节开始讲基于历史值影响的BP神经网络预测模型。

使用BP神经网络进行预测时,从考虑的输入指标角度,主要有两类模型:

1.1 受相关指标影响的BP神经网络算法原理

如图一所示,使用MATLAB的newff函数训练BP时,可以看到大部分情况是三层的神经网络(即输入层,隐含层,输出层)。这里帮助理解下神经网络原理:
1)输入层:相当于人的五官,五官获取外部信息,对应神经网络模型input端口接收输入数据的过程。
2)隐含层:对应人的大脑,大脑对五官传递来的数据进行分析和思考,神经网络的隐含层hidden Layer对输入层传来的数据x进行映射,简单理解为一个公式hiddenLayer_output=F(w*x+b)。其中,w、b叫做权重、阈值参数,F()为映射规则,也叫激活函数,hiddenLayer_output是隐含层对于传来的数据映射的输出值。换句话说,隐含层对于输入的影响因素数据x进行了映射,产生了映射值。
3)输出层:可以对应为人的四肢,大脑对五官传来的信息经过思考(隐含层映射)之后,再控制四肢执行动作(向外部作出响应)。类似地,BP神经网络的输出层对hiddenLayer_output再次进行映射,outputLayer_output=w *hiddenLayer_output+b。其中,w、b为权重、阈值参数,outputLayer_output是神经网络输出层的输出值(也叫仿真值、预测值)(理解为,人脑对外的执行动作,比如婴儿拍打桌子)。
4)梯度下降算法:通过计算outputLayer_output和神经网络模型传入的y值之间的偏差,使用算法来相应调整权重和阈值等参数。这个过程,可以理解为婴儿拍打桌子,打偏了,根据偏离的距离远近,来调整身体使得再次挥动的胳膊不断靠近桌子,最终打中。

再举个例子来加深理解:

图一所示BP神经网络,具备输入层、隐含层和输出层。BP是如何通过这三层结构来实现输出层的输出值outputLayer_output,不断逼近给定的y值,从而训练得到一个精准的模型的呢?

从图中串起来的端口,可以想到一个过程:坐地铁,将图一想象为一条地铁线路。王某某坐地铁回家的一天:在input起点站上车,中途经过了很多站(hiddenLayer),然后发现坐过头了(outputLayer对应现在的位置),那么王某某将会根据现在的位置离家(目标Target)的距离(误差Error),返回到中途的地铁站(hiddenLayer)重新坐地铁(误差反向传递,使用梯度下降算法更新w和b),如果王某某又一次发生失误,那么将再次进行这个调整的过程。

从在婴儿拍打桌子和王某某坐地铁的例子中,思考问题:BP的完整训练,需要先传入数据给input,再经过隐含层的映射,输出层得到BP仿真值,根据仿真值与目标值的误差,来调整参数,使得仿真值不断逼近目标值。比如(1)婴儿受到了外界的干扰因素(x),从而作出反应拍桌(predict),大脑不断的调整胳膊位置,控制四肢拍准(y、Target)。(2)王某某上车点(x),过站点(predict),不断返回中途站来调整位置,到家(y、Target)。

在这些环节中,涉及了影响因素数据x,目标值数据y(Target)。根据x,y,使用BP算法来寻求x与y之间存在的规律,实现由x来映射逼近y,这就是BP神经网络算法的作用。再多说一句,上述讲的过程,都是BP模型训练,那么最终得到的模型虽然训练准确,但是找到的规律(bp network)是否准确与可靠呢。于是,我们再给x1到训练好的bp network中,得到相应的BP输出值(预测值)predict1,通过作图,计算Mse,Mape,R方等指标,来对比predict1和y1的接近程度,就可以知道模型是否预测准确。这是BP模型的测试过程,即实现对数据的预测,并且对比实际值检验预测是否准确。
【BP预测】基于花授粉算法改进BP神经网络实现数据预测【BP预测】基于花授粉算法改进BP神经网络实现数据预测
图一 3层BP神经网络结构图

1.2 基于历史值影响的BP神经网络

以电力负荷预测问题为例,进行两种模型的区分。在预测某个时间段内的电力负荷时:

一种做法,是考虑 t 时刻的气候因素指标,比如该时刻的空气湿度x1,温度x2,以及节假日x3等的影响,对 t 时刻的负荷值进行预测。这是前面1.1所说的模型。

另一种做法,是认为电力负荷值的变化,与时间相关,比如认为t-1,t-2,t-3时刻的电力负荷值与t时刻的负荷值有关系,即满足公式y(t)=F(y(t-1),y(t-2),y(t-3))。采用BP神经网络进行训练模型时,则输入到神经网络的影响因素值为历史负荷值y(t-1),y(t-2),y(t-3),特别地,3叫做自回归阶数或者延迟。给到神经网络中的目标输出值为y(t)。

二、花授粉算法

花朵授粉算法( Flower Pollination Algorithm,FPA)是由英国剑桥大学学者Yang于2012年提出的,其基本思想来源于对自然界花朵自花授粉、异花授粉的模拟,是一种新的元启发式群智能随机优化技术 。算法中为了简便计算,假设每个植物仅有一朵花,每朵花只有一个配子,我们可以认为每一个配子都是解空间中的一个候选解。

Yang通过对花朵授粉的研究,抽象出以下四大规则:

1) 生物异花授粉被考虑为算法的全局探测行为,并由传粉者通过Levy飞行的机制实现全局授粉;

2)非生物自花授粉被视作算法的局部开采行为,或称局部授粉;

3)花朵的常性可以被认为是繁衍概率,他与两朵参与授粉花朵的相似性成正比例关系;

4)花朵的全局授粉与局部授粉通过转换概率 p∈[0,1]进行调节。 由于物理上的邻近性和风等因素的影响,在整个授粉活动中,转换概率 p是一个非常重要的参数。 文献[1]中对该参数的试验研究认为,取 p =0.8 更利于算法寻优。

 

直接上步骤(以多元函数寻优为例):

目标函数 : min g = f(x1,x2,x3,x4...........xd)

设置参量:N(候选解的个数),iter(最大迭代次数),p(转换概率),lamda(Levy飞行参数)

初始化花朵,随机设置一个NXd的矩阵;

计算适应度,即函数值;

获取最优解和最优解得位置;

A循环 1 : 1 :iter

B循环

if rand < p

全局授粉;

else

局部授粉;

end if

更新新一代的花朵与适应度(函数变量和函数值);

B循环end

获取新一代的最优解与最优解位置;

A循环end

 

全局更新公式:xi(t+1) = xi(t) + L(xi(t) - xbest(t)) L服从Levy分布,具体可以搜索布谷鸟算法。

局部更新公式:xi(t+1) = xi(t) + m(xj(t) - xk(t)) m是服从在[0,1]上均匀分布的随机数。其中,xj和xk是两个不同的个体

​三、代码

function [mem,bestSol,bestFit,optima,FunctionCalls]=FPA(para)
% Default parameters
if nargin<1,
   para=[50 0.25 500];   
end

n=para(1);           % Population size
p=para(2);           % Probabibility switch
N_iter=para (3);  % Number of iterations

phase = 1; %First state
phaseIte= [0.5,0.9,1.01]; %State vector

%Deb Function
d = 1;
Lb = 0;
Ub = 1;
optima =  [.1;.3;.5;.7;.9];


% Initialize the population
for i=1:n,
  Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);
  Fitness(i)=fitFunc(Sol(i,:));  %%Evaluate fitness function
end

% Initialice the memory
[mem,bestSol,bestFit,worstF] = memUpdate(Sol,Fitness, [], zeros(1,d), 100000000, 0, phase,d,Ub,Lb);

S = Sol;

FunctionCalls = 0;
% Main Loop
for ite = 1 : N_iter,
                    %For each pollen gamete, modify each position acoording
                    %to local or global pollination
                    for i = 1 : n,
                                % Switch probability
                                if rand>p,
                                            
                                            L=Levy(d);
                                            dS=L.*(Sol(i,:)-bestSol);
                                            S(i,:)=Sol(i,:)+dS;
                                            S(i,:)=simplebounds(S(i,:),Lb,Ub);
                                else
                                            epsilon=rand;
                                            % Find random flowers in the neighbourhood
                                            JK=randperm(n);
                                            % As they are random, the first two entries also random
                                            % If the flower are the same or similar species, then
                                            % they can be pollenated, otherwise, no action.
                                            % Formula: x_i^{t+1}+epsilon*(x_j^t-x_k^t)
                                            S(i,:)=S(i,:)+epsilon*(Sol(JK(1),:)-Sol(JK(2),:));
                                            % Check if the simple limits/bounds are OK
                                            S(i,:)=simplebounds(S(i,:),Lb,Ub);
                                end
                                Fitness(i)=fitFunc(S(i,:));
                    end
                    %Update the memory
                    [mem,bestSol,bestFit,worstF] = memUpdate(S,Fitness,mem,bestSol,bestFit,worstF,phase,d,Ub,Lb);
                    
                   Sol = get_best_nest(S, mem, p);
                   
                   FunctionCalls = FunctionCalls + n;
                
                   if ite/N_iter > phaseIte(phase)
                        %Next evolutionary process stage
                        phase = phase + 1;
                        [m,~]=size(mem);
                        %Depurate the memory for each stage
                        mem = cleanMemory(mem);
                        FunctionCalls = FunctionCalls + m;
                   end
end

%Plot the solutions (mem) founded by the multimodal framework
x = 0:.01:1;
y = ((sin(5.*pi.*x)).^ 6);
plot(x,y)
hold on
plot(mem(:,1),-mem(:,2),'r*');
【BP预测】基于花授粉算法改进BP神经网络实现数据预测

 

四、仿真结果

【BP预测】基于花授粉算法改进BP神经网络实现数据预测【BP预测】基于花授粉算法改进BP神经网络实现数据预测

图2花朵授粉算法收敛曲线

测试统计如下表所示

测试结果 测试集正确率 训练集正确率
BP神经网络 100% 95%
FPA-BP 100% 99.8%

 

五、参考文献及代码私信博主

《基于BP神经网络的宁夏水资源需求量预测》

 

 

 

 

上一篇:【SVM分类】基于花授粉算法优化实现SVM数据分类matlab源码


下一篇:痞子衡嵌入式:简析i.MXRT1170 Cortex-M4 L-MEM ECC功能特点、开启步骤、性能影响