代码如下:
"""
下面的方法是用kmeans方法进行聚类,用calinski_harabaz_score方法评价聚类效果的好坏
大概是类间距除以类内距,因此这个值越大越好 """
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import KMeans
from sklearn import metrics
"""
下面是生成一些样本数据
X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2],
簇方差分别为[0.4, 0.5, 0.2]
"""
X, y = make_blobs(n_samples=500, n_features=2, centers=[[2,3], [3,0], [1,1]], cluster_std=[0.4, 0.5, 0.2],
random_state =9)
"""
首先画出生成的样本数据的分布
"""
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()
"""
下面看不同的k值下的聚类效果
"""
score_all=[]
list1=range(2,6)
#其中i不能为0,也不能为1
for i in range(2,6):
y_pred = KMeans(n_clusters=i, random_state=9).fit_predict(X)
#画出结果的散点图
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
score=metrics.calinski_harabaz_score(X, y_pred)
score_all.append(score)
print(score)
"""
画出不同k值对应的聚类效果
"""
plt.plt(list1,score_all)
plt.show()
原来的数据分布图为:
k=2时,聚类情况:
k=3时,聚类情况:
k=4时的聚类效果:
k=5时的聚类效果:
不同k值对应的聚类效果折线图:
我们可以看到,k=3时,哪个值最大,效果最好。