质数序列

题目描述

由于去 NOI 的火车“堵”了数不清时间,小 Z 和小 D 打完 ETG,闲着无聊开 始看今年的 JSOI 省选题,并尝试着修改题目: 对于一个长度为L≥2的序列,X :x1,x2,...,xL,如果满足对于任意的1≤i< j≤L,均有xi+xj为质数,则他们把X称为一个“质数序列”。 现在有一个长度为N的序列,A:a1,a2,...,aN ,他希望从中选取一个包含元 素最多的子序列,使得这个子序列是一个质数序列。如果元素个数相同,则使子 序列之和最大(在此意义下,保证有唯一解)。 因为他们还要 xx,所以这个任务就交给你了。

输入格式

输入第一行包含一个正整数 N。 接下来一行包含N个正整数,依次描述a1,a2 ,...,aN 。

输出格式

输出两行,第一行一个整数 L,表示最长质数子序列的长度,第二行 L 个整 数从小到大输出,表示最长质数子序列(元素个数相同,则使子序列之和最大)。

对于30%的数据满足N<=100。 对于 60%的数据满足 N <= 1000 , ai <= 5,000,000 。 对于 100%的数据满足 N <= 1000 ,1 <= ai <= 15,000,000 。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=1000+1;
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-') f=-1; ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0'; ch=getchar();}
    return x*f;
}
int n,tot=0,cnt=0,ans=0,x1,x2;
int a[maxn],ou[maxn],ji[maxn];
bool pd(int x)
{
    if(x<2) return 0;
    for(int i=2;i*i<=x;i++)
    if(x%i==0) return 0;
    return 1;
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++)
    {
        a[i]=read(); 
        if(a[i]&1) ji[++ji[0]]=a[i];
        else ou[++ou[0]]=a[i];
    }
    sort(ji+1,ji+ji[0]+1);
    sort(ou+1,ou+ou[0]+1);
    while(ji[cnt+1]==1) cnt++;//奇数为1个数 
    if(cnt<2)
    {
        for(int i=ji[0];i>=1;i--)
        for(int j=ou[0];j>=1;j--)
        {
            int tmp=ji[i]+ou[j];
            if(pd(tmp)&&tmp>ans)
            {
                ans=tmp;
                x1=ji[i]; x2=ou[j];
            }
        }
        if(x1>x2){int t=x1; x1=x2; x2=t;}
        printf("%d\n%d %d",2,x1,x2);
    }else if(cnt>=2)
    {
        for(int i=ou[0];i>=1;i--)
            if(pd(ou[i]+1)){ans=ou[i]; break;}
        if(ans!=0) printf("%d\n",cnt+1);
        else printf("%d\n",cnt);
        for(int i=1;i<=cnt;i++) printf("%d ",1);
        if(ans!=0) printf("%d",ans);
    }
    return 0;
}
/*
3
2 3 4
*/

首先来看一个性质

当两个数都大于1时

奇数+奇数=偶数(>2,不是质数)

偶数+偶数=偶数(不是质数)

所以当原序列中没有1时,原序列只可能有两个数且一个是奇数一个是偶数。

若序列中有1时,1+1=2,2是质数。设cnt为序列中1的个数

当cnt<2时,序列中最多可能有两个元素一奇一偶,所以直接可以用两重for循环分别枚举奇数和偶数,枚举出所有的排列判断它们的和是不是质数,最后保留最优解就行了。

当cnt>=2时,为了保证序列最长所有的1肯定是要保留的,此时序列中还可以再加进来一个偶数,我们再枚举所有偶数判断更新就行了。

50分

不考虑1的情况暴力枚举

100分

对有1的情况进行特判

上一篇:EBS mo_glob_org_access_tmp表的分析


下一篇:Exchange2016 创建显示会议室列表